On the integrability of 2D Hamiltonian systems with variable Gaussian curvature

被引:11
|
作者
Elmandouh, A. A. [1 ,2 ]
机构
[1] King Faisal Univ, Dept Math & Stat, Fac Sci, POB 400, Al Ahsaa 31982, Saudi Arabia
[2] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
关键词
Liouville integrability; Differential Galois theory; Systems in polar coordinates; ATWOOD MACHINE; NONEXISTENCE; INTEGRALS; MOTION;
D O I
10.1007/s11071-018-4237-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we consider the integrability of a general 2D motion of a particle on a surface with variable Gaussian curvature under the influence of conservative potential forces. Although this system has a kinetic energy relying on the coordinates, it remains homogeneous. The homogeneity of the system generally enables us to find a particular solution that can be utilized to derive the necessary conditions for the integrability by studying the properties of the differential Galois group of the normal variational equations along this particular solution. We present a new theory that can be applied to determine the necessary conditions for the integrability of Hamiltonian systems having a variable Gaussian curvature.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 50 条
  • [21] Integrability of Hamiltonian systems and the Lame equation
    Kasperczuk, SP
    APPLIED MATHEMATICS LETTERS, 2005, 18 (05) : 555 - 561
  • [22] Integrability of Hamiltonian systems with gyroscopic term
    Maria Przybylska
    Andrzej J. Maciejewski
    Nonlinear Dynamics, 2023, 111 : 275 - 287
  • [23] For the Integrability of the 2D Trapped Ionic System
    Georgiev, Georgi
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [24] Hamiltonian formulation of surfaces with constant Gaussian curvature
    Trejo, Miguel
    Ben Amar, Martine
    Mueller, Martin Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (42)
  • [25] Controlling Hamiltonian chaos via Gaussian curvature
    Oloumi, A
    Teychenné, D
    PHYSICAL REVIEW E, 1999, 60 (06): : R6279 - R6282
  • [26] HAMILTONIAN APPROACH TO 2D SUPERGRAVITY
    GAMBOA, J
    RAMIREZ, C
    PHYSICS LETTERS B, 1993, 301 (01) : 20 - 24
  • [27] Separation equations for 2D superintegrable systems on constant curvature spaces
    Escobar-Ruiz, M. A.
    Kalnins, Ernest G.
    Miller, Willard, Jr.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (38)
  • [28] State/Driving-Variable Representation of 2D Systems
    Isabel Brás
    Paula Rocha
    Multidimensional Systems and Signal Processing, 2002, 13 : 129 - 156
  • [29] 2D carbon sheets with negative Gaussian curvature assembled from pentagonal carbon nanoflakes
    Zhang, Cunzhi
    Wang, Fancy Qian
    Yu, Jiabing
    Gong, Sheng
    Li, Xiaoyin
    Sun, Qiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (14) : 9123 - 9129
  • [30] State/driving-variable representation of 2D systems
    Brás, I
    Rocha, P
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2002, 13 (02) : 129 - 156