Piezoresistivity of silicon quantum well wire

被引:8
|
作者
Pramanik, C. [1 ]
Banerjee, S.
Saha, H.
Sarkar, C. K.
机构
[1] Bengal Engn & Sci Univ, Dept Elect & Telecommun Engn, Sibpur, India
[2] Bangabasi Coll, Dept Phys, Kolkata, India
[3] Jadavpur Univ, Dept Elect & Telecommun Engn, IC Design & Fabricat Ctr, Kolkata, India
关键词
D O I
10.1088/0957-4484/17/13/022
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, the piezoresistive coefficient of silicon quantum well wire has been estimated using k. p theory and the deformation potential concept and has been observed to be 5.5 times higher compared to that of the bulk for a quantum well width of 2.5 nm. The effect of the quantum confinement of holes on the bandstructure of nanocrystalline silicon resulting in the separation of light hole and heavy hole subbands has been considered. On the application of stress, there is a further shift in the energy levels of heavy hole and light hole bands, leading to a change in the carrier concentration and effective mass of holes in the respective subbands which ultimately is responsible for the enhancement of the piezoresistive coefficient. The change in the energy levels and effective mass are significant below well width dimensions of 5 and 20 nm, respectively.
引用
收藏
页码:3209 / 3214
页数:6
相关论文
共 50 条
  • [31] Calculated optical transitions in a silicon quantum wire modulated by a quantum dot
    Xanthippi Zianni
    Androula G. Nassiopoulou
    Journal of Materials Science: Materials in Electronics, 2009, 20 : 68 - 70
  • [32] Calculated optical transitions in a silicon quantum wire modulated by a quantum dot
    Zianni, Xanthippi
    Nassiopoulou, Androula G.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2009, 20 : 68 - 70
  • [33] A Novel Approach for Piezoresistivity Characterization of Silicon Nanowires
    Nie, M.
    Santagata, F.
    Moh, T.
    Sarro, P. M.
    Nie, M.
    Huang, Qing-An
    2012 IEEE SENSORS PROCEEDINGS, 2012, : 1747 - 1750
  • [34] Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits
    Bonneau, D.
    Engin, E.
    Ohira, K.
    Suzuki, N.
    Yoshida, H.
    Iizuka, N.
    Ezaki, M.
    Natarajan, C. M.
    Tanner, M. G.
    Hadfield, R. H.
    Dorenbos, S. N.
    Zwiller, V.
    O'Brien, J. L.
    Thompson, M. G.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [35] Software tools for the design and analysis of quantum well, quantum wire and quantum dot devices
    Tanaka, R. Y.
    Passaro, A.
    Abe, N. M.
    Villas-Boas, J. M.
    Vieira, G. S.
    Stephany, S.
    2007 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2007, : 914 - +
  • [36] QUANTUM-WELL EXCITON POLARITON EMISSION FROM MULTI-QUANTUM-WELL WIRE STRUCTURES
    KOHL, M
    HEITMANN, D
    GRAMBOW, P
    PLOOG, K
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 5 (02) : 235 - 238
  • [37] Novel method for silicon quantum wire transistor fabrication
    Kedzierski, J
    Bokor, J
    Anderson, E
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1999, 17 (06): : 3244 - 3247
  • [38] Novel method for silicon quantum wire transistor fabrication
    J Vac Sci Technol B Microelectron Nanometer Struct, (3244-3247):
  • [39] BAND-GAP OF A SILICON QUANTUM-WIRE
    SHEN, MY
    ZHANG, SL
    PHYSICS LETTERS A, 1993, 176 (3-4) : 254 - 258
  • [40] Quantum confinement effect in silicon quantum-well layers
    Xia, JB
    Cheah, KW
    PHYSICAL REVIEW B, 1997, 56 (23): : 14925 - 14928