MIDPOINTS FOR THOMPSON'S METRIC ON SYMMETRIC CONES

被引:0
|
作者
Lemmens, Bas [1 ]
Roelands, Mark [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT27NF, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
CONVEXITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterise the affine span of the midpoints sets, M(x, y), for Thompson's metric on symmetric cones in terms of a translation of the zero-component of the Peirce decomposition of an idempotent. As a consequence we derive an explicit formula for the dimension of the affine span of M(x, y) in case the associated Euclidean Jordan algebra is simple. In particular, we find for A and B in the cone positive definite Hermitian matrices that dim(aff M(A, B)) = q(2), where q is the number of eigenvalues mu of A(-1)B, counting multiplicities, such that mu not equal max{lambda(+)(A(-1)B), lambda(-)(A(-1)B)(-1)}, where lambda(+)(A(-1)B) := max{lambda: lambda is an element of sigma(A(-1)B)} and lambda(-)(A(-1)B) := min{lambda: lambda is an element of sigma(A(-1)B)}. These results extend work by Y. Lim [18].
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [41] REGULARIZED MEDIANS ON SYMMETRIC CONES
    Kum, Sangho
    Yao, Jen-Chih
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (03): : 49 - 62
  • [42] Strict contractions of symmetric cones
    Lim, Y
    MATHEMATISCHE ZEITSCHRIFT, 2000, 234 (02) : 407 - 411
  • [43] Geometric means on symmetric cones
    Y. Lim
    Archiv der Mathematik, 2000, 75 : 39 - 45
  • [44] Symmetric products as cones and products
    Alvarado, EC
    TOPOLOGY PROCEEDINGS, VOL 28, NO 1, 2004, 2004, 28 (01): : 55 - 67
  • [45] Symmetric Stable Processes in Cones
    Rodrigo Bañuelos
    Krzysztof Bogdan
    Potential Analysis, 2004, 21 : 263 - 288
  • [46] REGULARIZED MEDIANS ON SYMMETRIC CONES
    Kum, Sangho
    Yao, Jen-Chih
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 49 - 62
  • [47] Finsler metrics on symmetric cones
    Lim, YD
    MATHEMATISCHE ANNALEN, 2000, 316 (02) : 379 - 389
  • [48] α-power Sums on Symmetric Cones
    Uohashi, Keiko
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 126 - 134
  • [49] Affine Processes on Symmetric Cones
    Cuchiero, Christa
    Keller-Ressel, Martin
    Mayerhofer, Eberhard
    Teichmann, Josef
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (02) : 359 - 422
  • [50] Strict contractions of symmetric cones
    Yongdo Lim
    Mathematische Zeitschrift, 2000, 234 : 407 - 411