MIDPOINTS FOR THOMPSON'S METRIC ON SYMMETRIC CONES

被引:0
|
作者
Lemmens, Bas [1 ]
Roelands, Mark [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT27NF, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
CONVEXITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterise the affine span of the midpoints sets, M(x, y), for Thompson's metric on symmetric cones in terms of a translation of the zero-component of the Peirce decomposition of an idempotent. As a consequence we derive an explicit formula for the dimension of the affine span of M(x, y) in case the associated Euclidean Jordan algebra is simple. In particular, we find for A and B in the cone positive definite Hermitian matrices that dim(aff M(A, B)) = q(2), where q is the number of eigenvalues mu of A(-1)B, counting multiplicities, such that mu not equal max{lambda(+)(A(-1)B), lambda(-)(A(-1)B)(-1)}, where lambda(+)(A(-1)B) := max{lambda: lambda is an element of sigma(A(-1)B)} and lambda(-)(A(-1)B) := min{lambda: lambda is an element of sigma(A(-1)B)}. These results extend work by Y. Lim [18].
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [31] METRIC PROPERTIES OF HIGHER-DIMENSIONAL THOMPSON'S GROUPS
    Burillo, Jose
    Cleary, Sean
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (01) : 49 - 62
  • [32] Degenerating Kahler-Einstein cones, locally symmetric cusps, and the Tian-Yau metric
    Biquard, Olivier
    Guenancia, Henri
    INVENTIONES MATHEMATICAE, 2022, 230 (03) : 1101 - 1163
  • [33] Denjoy-Wolff theorems for Hilbert's and Thompson's metric spaces
    Lemmens, Bas
    Lins, Brian
    Nussbaum, Roger
    Wortel, Marten
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 134 (02): : 671 - 718
  • [34] Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces
    Bas Lemmens
    Brian Lins
    Roger Nussbaum
    Marten Wortel
    Journal d'Analyse Mathématique, 2018, 134 : 671 - 718
  • [35] The automorphism group of Thompson's group F: subgroups and metric properties
    Burillo, Jose
    Cleary, Sean
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) : 809 - 828
  • [36] Finsler metrics on symmetric cones
    Yongdo Lim
    Mathematische Annalen, 2000, 316 : 379 - 389
  • [37] Symmetric stable processes in cones
    Bañuelos, R
    Bogdan, K
    POTENTIAL ANALYSIS, 2004, 21 (03) : 263 - 288
  • [38] NO DICE THEOREM ON SYMMETRIC CONES
    Kum, Sangho
    Lee, Hosoo
    Lim, Yongdo
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 1967 - 1982
  • [39] Divergences on Symmetric Cones and Medians
    Kum, Sangho
    Lim, Yongdo
    Yun, Sangwoon
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (04): : 867 - 886
  • [40] Affine Processes on Symmetric Cones
    Christa Cuchiero
    Martin Keller-Ressel
    Eberhard Mayerhofer
    Josef Teichmann
    Journal of Theoretical Probability, 2016, 29 : 359 - 422