MIDPOINTS FOR THOMPSON'S METRIC ON SYMMETRIC CONES

被引:0
|
作者
Lemmens, Bas [1 ]
Roelands, Mark [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT27NF, Kent, England
基金
英国工程与自然科学研究理事会;
关键词
CONVEXITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterise the affine span of the midpoints sets, M(x, y), for Thompson's metric on symmetric cones in terms of a translation of the zero-component of the Peirce decomposition of an idempotent. As a consequence we derive an explicit formula for the dimension of the affine span of M(x, y) in case the associated Euclidean Jordan algebra is simple. In particular, we find for A and B in the cone positive definite Hermitian matrices that dim(aff M(A, B)) = q(2), where q is the number of eigenvalues mu of A(-1)B, counting multiplicities, such that mu not equal max{lambda(+)(A(-1)B), lambda(-)(A(-1)B)(-1)}, where lambda(+)(A(-1)B) := max{lambda: lambda is an element of sigma(A(-1)B)} and lambda(-)(A(-1)B) := min{lambda: lambda is an element of sigma(A(-1)B)}. These results extend work by Y. Lim [18].
引用
收藏
页码:197 / 208
页数:12
相关论文
共 50 条
  • [21] Note on Vector Translation with Respect to Thompson's Metric
    Herzog, Gerd
    Kunstmann, Peer C.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (08) : 1008 - 1013
  • [22] Degenerating Kähler–Einstein cones, locally symmetric cusps, and the Tian–Yau metric
    Olivier Biquard
    Henri Guenancia
    Inventiones mathematicae, 2022, 230 : 1101 - 1163
  • [23] On a metric on domination cones
    Propoi, AI
    DOKLADY MATHEMATICS, 2003, 67 (03) : 449 - 451
  • [24] Towards Thompson's conjecture for alternating and symmetric groups
    Gorshkov, Ilya B.
    JOURNAL OF GROUP THEORY, 2016, 19 (02) : 331 - 336
  • [25] A new extension of Chubanov's method to symmetric cones
    Kanoh, Shin-ichi
    Yoshise, Akiko
    MATHEMATICAL PROGRAMMING, 2024, 205 (1-2) : 773 - 812
  • [26] A new extension of Chubanov’s method to symmetric cones
    Shin-ichi Kanoh
    Akiko Yoshise
    Mathematical Programming, 2024, 205 : 773 - 812
  • [27] Loos symmetric cones
    Jimmie Lawson
    Positivity, 2019, 23 : 1225 - 1243
  • [28] Symmetric products as cones
    Illanes, Alejandro
    Martinez-de-la-Vega, Veronica
    TOPOLOGY AND ITS APPLICATIONS, 2017, 228 : 36 - 46
  • [29] Loos symmetric cones
    Lawson, Jimmie
    POSITIVITY, 2019, 23 (05) : 1225 - 1243
  • [30] Asymptotic estimates in Thompson's metric for semilinear parabolic equations
    Herzog, Gerd
    Kunstmann, Peer Chr
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 : 112 - 120