Fully Automated Quantification of Cardiac Indices from Cine MRI Using a Combination of Convolution Neural Networks

被引:0
|
作者
Pereira, Renato F. [1 ]
Rebelo, Marina S. [1 ]
Moreno, Ramon A. [1 ]
Marco, Anderson G. [1 ]
Lima, Daniel M. [1 ]
Arruda, Marcelo A. F. [1 ]
Krieger, Jose E. [1 ]
Gutierrez, Marco A. [1 ]
机构
[1] Univ Sao Paulo, Med Sch, Clin Hosp, Heart Inst, Av Dr Eneas de Carvalho Aguiar 44, BR-0503900 Sao Paulo, SP, Brazil
关键词
LEFT-VENTRICLE;
D O I
10.1109/embc44109.2020.9176166
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular magnetic resonance imaging (CMRI) is one of the most accurate non-invasive modalities for evaluation of cardiac function, especially the left ventricle (LV). In this modality, the manual or semi-automatic delineation of LV by experts is currently the standard clinical practice for chambers segmentation. Despite these efforts, global quantification of LV remains a challenge. In this work, a combination of two convolutional neural network (CNN) architectures for quantitative evaluation of the LV is described, which estimates the cavity and the myocardium areas, endocardial cavity dimensions in three directions, and the myocardium regional wall thickness in six radial directions. The method was validated in CMRI exams of 56 patients (LVQuan19 dataset) and evaluated by metrics Dice Index, Mean Absolute Error, and Correlation with superior performance compared to the state-of-the-art methods. The combination of the CNN architectures provided a simpler yet fully automated approach, requiring no specialist interaction.
引用
收藏
页码:1221 / 1224
页数:4
相关论文
共 50 条
  • [41] A Fingerprint Matching Algorithm Using the Combination of Edge Features and Convolution Neural Networks
    Lazarescu, Andreea-Monica Dinca
    Moldovanu, Simona
    Moraru, Luminita
    INVENTIONS, 2022, 7 (02)
  • [42] Recurrent Fully Convolutional Neural Networks for Multi-slice MRI Cardiac Segmentation
    Poudel, Rudra P. K.
    Lamata, Pablo
    Montana, Giovanni
    RECONSTRUCTION, SEGMENTATION, AND ANALYSIS OF MEDICAL IMAGES, 2017, 10129 : 83 - 94
  • [43] Quantification of left ventricular volume from cardiac cine MRI using active contour model combined with gradient vector flow
    Murase, K
    Tanki, N
    Kumashiro, M
    Momoi, R
    Miyazaki, S
    Yamazaki, Y
    Tabuchi, T
    Nagayama, M
    Watanabe, Y
    CARS 2005: Computer Assisted Radiology and Surgery, 2005, 1281 : 1272 - 1272
  • [44] A Robust, Automated Left Ventricle Region of Interest Localization Technique using a Cardiac Cine MRI Atlas
    Ben-Zikri, Yehuda Kfir
    Linte, Cristian A.
    MEDICAL IMAGING 2016: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2016, 9786
  • [45] Cardiac Image Segmentation from Cine Cardiac MRI Using Graph Cuts and Shape Priors
    Mahapatra, Dwarikanath
    JOURNAL OF DIGITAL IMAGING, 2013, 26 (04) : 721 - 730
  • [46] Automated MRI quantification of pediatric abdominal adipose tissue using convolutional neural networks and novel total intensity maps
    Suarez-Garcia, Jose Gerardo
    Alonso, Benito de Celis
    Hernandez-Lopez, Javier Miguel
    Hidalgo-Tobonb, Silvia S.
    Dies-Suarez, Pilar
    So, Po-Wah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [47] Cardiac Image Segmentation from Cine Cardiac MRI Using Graph Cuts and Shape Priors
    Dwarikanath Mahapatra
    Journal of Digital Imaging, 2013, 26 : 721 - 730
  • [48] Automated Classification of Body MRI Sequences Using Convolutional Neural Networks
    Kim, Boah
    Mathai, Tejas Sudharshan
    Helm, Kimberly
    Mukherjee, Pritam
    Liu, Jianfei
    Summers, Ronald M.
    ACADEMIC RADIOLOGY, 2025, 32 (03) : 1192 - 1203
  • [49] Automated triaging of head MRI examinations using convolutional neural networks
    Wood, David A.
    Kafiabadi, Sina
    Al Busaidi, Aisha
    Guilhem, Emily
    Montvila, Antanas
    Agarwal, Siddharth
    Lynch, Jeremy
    Townend, Matthew
    Barker, Gareth
    Ourselin, Sebastian
    Cole, James H.
    Booth, Thomas C.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 143, 2021, 143 : 813 - +
  • [50] Automated brain extraction of multisequence MRI using artificial neural networks
    Isensee, Fabian
    Schell, Marianne
    Pflueger, Irada
    Brugnara, Gianluca
    Bonekamp, David
    Neuberger, Ulf
    Wick, Antje
    Schlemmer, Heinz-Peter
    Heiland, Sabine
    Wick, Wolfgang
    Bendszus, Martin
    Maier-Hein, Klaus H.
    Kickingereder, Philipp
    HUMAN BRAIN MAPPING, 2019, 40 (17) : 4952 - 4964