Fully Automated Quantification of Cardiac Indices from Cine MRI Using a Combination of Convolution Neural Networks

被引:0
|
作者
Pereira, Renato F. [1 ]
Rebelo, Marina S. [1 ]
Moreno, Ramon A. [1 ]
Marco, Anderson G. [1 ]
Lima, Daniel M. [1 ]
Arruda, Marcelo A. F. [1 ]
Krieger, Jose E. [1 ]
Gutierrez, Marco A. [1 ]
机构
[1] Univ Sao Paulo, Med Sch, Clin Hosp, Heart Inst, Av Dr Eneas de Carvalho Aguiar 44, BR-0503900 Sao Paulo, SP, Brazil
关键词
LEFT-VENTRICLE;
D O I
10.1109/embc44109.2020.9176166
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular magnetic resonance imaging (CMRI) is one of the most accurate non-invasive modalities for evaluation of cardiac function, especially the left ventricle (LV). In this modality, the manual or semi-automatic delineation of LV by experts is currently the standard clinical practice for chambers segmentation. Despite these efforts, global quantification of LV remains a challenge. In this work, a combination of two convolutional neural network (CNN) architectures for quantitative evaluation of the LV is described, which estimates the cavity and the myocardium areas, endocardial cavity dimensions in three directions, and the myocardium regional wall thickness in six radial directions. The method was validated in CMRI exams of 56 patients (LVQuan19 dataset) and evaluated by metrics Dice Index, Mean Absolute Error, and Correlation with superior performance compared to the state-of-the-art methods. The combination of the CNN architectures provided a simpler yet fully automated approach, requiring no specialist interaction.
引用
收藏
页码:1221 / 1224
页数:4
相关论文
共 50 条
  • [21] Fully automated cardiac MRI segmentation using dilated residual network
    Ahmad, Faizan
    Hou, Wenguo
    Xiong, Jing
    Xia, Zeyang
    MEDICAL PHYSICS, 2023, 50 (04) : 2162 - 2175
  • [22] Automated cardiac motion estimation from 3D Cine DENSE MRI
    Andrew D Gilliam
    Xiaodong Zhong
    Frederick H Epstein
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [23] Buildings Detection in VHR SAR Images Using Fully Convolution Neural Networks
    Shahzad, Muhammad
    Maurer, Michael
    Fraundorfer, Friedrich
    Wang, Yuanyuan
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1100 - 1116
  • [24] EXTRACTION OF BUILDINGS IN VHR SAR IMAGES USING FULLY CONVOLUTION NEURAL NETWORKS
    Shahzad, Muhammad
    Maurer, Michael
    Fraundorfer, Friedrich
    Wang, Yuanyuan
    Zhu, Xiao Xiang
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4367 - 4370
  • [25] Convolutional Neural Networks for Fully Automated Diagnosis of Cardiac Amyloidosis by Cardiac Magnetic Resonance Imaging
    Agibetov, Asan
    Kammerlander, Andreas
    Duca, Franz
    Nitsche, Christian
    Koschutnik, Matthias
    Dona, Carolina
    Dachs, Theresa-Marie
    Rettl, Rene
    Stria, Alessa
    Schrutka, Lore
    Binder, Christina
    Kastner, Johannes
    Agis, Hermine
    Kain, Renate
    Auer-Grumbach, Michaela
    Samwald, Matthias
    Hengstenberg, Christian
    Dorffner, Georg
    Mascherbauer, Julia
    Bonderman, Diana
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (12):
  • [26] Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks
    Lorenzo, Pablo Ribalta
    Nalepa, Jakub
    Bobek-Billewicz, Barbara
    Wawrzyniak, Pawel
    Mrukwa, Grzegorz
    Kawulok, Michal
    Ulrych, Pawel
    Hayball, Michael R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 176 : 135 - 148
  • [27] Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI
    Pradella, Maurice
    Scott, Michael B.
    Omer, Muhammad
    Hill, Seth K.
    Lockhart, Lisette
    Yi, Xin
    Amir-Khalili, Alborz
    Sojoudi, Alireza
    Allen, Bradley D.
    Avery, Ryan
    Markl, Michael
    EUROPEAN RADIOLOGY, 2023, 33 (03) : 1707 - 1718
  • [28] Reconstruction of Cardiac Cine MR Images Using Analytic Image and Neural Networks
    Njiwa, J. Yankam
    Berkane, M.
    Luo, J. H.
    Clarysse, P.
    Magnin, I. E.
    Zhu, Y. M.
    2009 PROCEEDINGS OF 6TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2009), 2009, : 610 - +
  • [29] Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
    Ye, Yufeng
    Cai, Zongyou
    Huang, Bin
    He, Yan
    Zeng, Ping
    Zou, Guorong
    Deng, Wei
    Chen, Hanwei
    Huang, Bingsheng
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [30] A bidirectional registration neural network for cardiac motion tracking using cine MRI images
    Lu, Jiayi
    Jin, Renchao
    Wang, Manyang
    Song, Enmin
    Ma, Guangzhi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 160