Fully Automated Quantification of Cardiac Indices from Cine MRI Using a Combination of Convolution Neural Networks

被引:0
|
作者
Pereira, Renato F. [1 ]
Rebelo, Marina S. [1 ]
Moreno, Ramon A. [1 ]
Marco, Anderson G. [1 ]
Lima, Daniel M. [1 ]
Arruda, Marcelo A. F. [1 ]
Krieger, Jose E. [1 ]
Gutierrez, Marco A. [1 ]
机构
[1] Univ Sao Paulo, Med Sch, Clin Hosp, Heart Inst, Av Dr Eneas de Carvalho Aguiar 44, BR-0503900 Sao Paulo, SP, Brazil
关键词
LEFT-VENTRICLE;
D O I
10.1109/embc44109.2020.9176166
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular magnetic resonance imaging (CMRI) is one of the most accurate non-invasive modalities for evaluation of cardiac function, especially the left ventricle (LV). In this modality, the manual or semi-automatic delineation of LV by experts is currently the standard clinical practice for chambers segmentation. Despite these efforts, global quantification of LV remains a challenge. In this work, a combination of two convolutional neural network (CNN) architectures for quantitative evaluation of the LV is described, which estimates the cavity and the myocardium areas, endocardial cavity dimensions in three directions, and the myocardium regional wall thickness in six radial directions. The method was validated in CMRI exams of 56 patients (LVQuan19 dataset) and evaluated by metrics Dice Index, Mean Absolute Error, and Correlation with superior performance compared to the state-of-the-art methods. The combination of the CNN architectures provided a simpler yet fully automated approach, requiring no specialist interaction.
引用
收藏
页码:1221 / 1224
页数:4
相关论文
共 50 条
  • [31] Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI
    Maurice Pradella
    Michael B. Scott
    Muhammad Omer
    Seth K. Hill
    Lisette Lockhart
    Xin Yi
    Alborz Amir-Khalili
    Alireza Sojoudi
    Bradley D. Allen
    Ryan Avery
    Michael Markl
    European Radiology, 2023, 33 : 1707 - 1718
  • [32] FULLY AUTOMATIC CARDIAC SEGMENTATION AND QUANTIFICATION FOR PULMONARY HYPERTENSION ANALYSIS USING MICE CINE MR IMAGES
    Zufiria, Blanca
    Stephens, Maialen
    Jesus Sanchez, Maria
    Ruiz-Cabello, Jesus
    Lopez-Linares, Karen
    Macia, Ivan
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1411 - 1415
  • [33] From coarse to refined: Fully automated amyloid brain PET spatial normalization pipeline using Convolutional Neural Networks without MRI
    Tang, C.
    Sun, X.
    Ruan, W.
    Lan, X.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S405 - S405
  • [34] Fully automated left atrium segmentation from anatomical cine long-axis MRI sequences using deep convolutional neural network with unscented Kalman filter
    Zhang, Xiaoran
    Noga, Michelle
    Martin, David Glynn
    Punithakumar, Kumaradevan
    MEDICAL IMAGE ANALYSIS, 2021, 68
  • [35] Fully automated segmentation of left ventricle using dual dynamic programming in cardiac cine MR images
    Jiang, Luan
    Ling, Shan
    Li, Qiang
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [36] Automated volumetric damage detection and quantification using region-based convolution neural networks and an inexpensive depth camera.
    Beckman, Gustavo H.
    Polyzois, Dimos
    Cha, Young-Jin
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, 2018, 10598
  • [37] Fully automated carbonate petrography using deep convolutional neural networks
    Koeshidayatullah, Ardiansyah
    Morsilli, Michele
    Lehrmann, Daniel J.
    Al-Ramadan, Khalid
    Payne, Jonathan L.
    MARINE AND PETROLEUM GEOLOGY, 2020, 122 (122)
  • [38] FULLY AUTOMATED CLASSIFICATION OF MAMMOGRAMS USING DEEP RESIDUAL NEURAL NETWORKS
    Dhungel, Neeraj
    Carneiro, Gustavo
    Bradley, Andrew P.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 310 - 314
  • [39] Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images Using a Hybrid of Fully Convolutional Neural Networks and Convolutional LSTM
    Zhang, Dongqing
    Icke, Ilknur
    Dogdas, Belma
    Parimal, Sarayu
    Sampath, Smita
    Forbes, Joseph
    Bagchi, Ansuman
    Chin, Chih-Liang
    Chen, Antong
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [40] Brain Tumour Identification Through MRI Images Using Convolution Neural Networks
    Rao, N. Jagan Mohana
    Kumar, B. Anil
    PROCEEDING OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS, BIG DATA AND IOT (ICCBI-2018), 2020, 31 : 1046 - 1053