Fully Automated Quantification of Cardiac Indices from Cine MRI Using a Combination of Convolution Neural Networks

被引:0
|
作者
Pereira, Renato F. [1 ]
Rebelo, Marina S. [1 ]
Moreno, Ramon A. [1 ]
Marco, Anderson G. [1 ]
Lima, Daniel M. [1 ]
Arruda, Marcelo A. F. [1 ]
Krieger, Jose E. [1 ]
Gutierrez, Marco A. [1 ]
机构
[1] Univ Sao Paulo, Med Sch, Clin Hosp, Heart Inst, Av Dr Eneas de Carvalho Aguiar 44, BR-0503900 Sao Paulo, SP, Brazil
关键词
LEFT-VENTRICLE;
D O I
10.1109/embc44109.2020.9176166
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular magnetic resonance imaging (CMRI) is one of the most accurate non-invasive modalities for evaluation of cardiac function, especially the left ventricle (LV). In this modality, the manual or semi-automatic delineation of LV by experts is currently the standard clinical practice for chambers segmentation. Despite these efforts, global quantification of LV remains a challenge. In this work, a combination of two convolutional neural network (CNN) architectures for quantitative evaluation of the LV is described, which estimates the cavity and the myocardium areas, endocardial cavity dimensions in three directions, and the myocardium regional wall thickness in six radial directions. The method was validated in CMRI exams of 56 patients (LVQuan19 dataset) and evaluated by metrics Dice Index, Mean Absolute Error, and Correlation with superior performance compared to the state-of-the-art methods. The combination of the CNN architectures provided a simpler yet fully automated approach, requiring no specialist interaction.
引用
收藏
页码:1221 / 1224
页数:4
相关论文
共 50 条
  • [1] FULLY AUTOMATED MYOCARDIAL STRAIN ESTIMATION FROM CINE MRI USING CONVOLUTIONAL NEURAL NETWORKS
    Puyol-Anton, Esther
    Ruijsink, Bram
    Bai, Wenjia
    Langet, Helene
    De Craene, Mathieu
    Schnabel, Julia A.
    Piro, Paolo
    King, Andrew P.
    Sinclair, Matthew
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1139 - 1143
  • [2] Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression
    Tan, Li Kuo
    McLaughlin, Robert A.
    Lim, Einly
    Aziz, Yang Faridah Abdul
    Liew, Yih Miin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (01) : 140 - 152
  • [3] Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural Networks
    Vesal, Sulaiman
    Maier, Andreas
    Ravikumar, Nishant
    JOURNAL OF IMAGING, 2020, 6 (07)
  • [4] Fully Automated Myocardial T1 Quantification Using Fully Convolutional Neural Networks
    Fahmy, Ahmed S.
    El-Rewaidy, Hossam A.
    Nakamori, Shiro
    Nezafat, Reza
    CIRCULATION, 2018, 138
  • [5] Towards Automated Quantification of the Tumour Microenvironment using Fully Convolutional Neural Networks
    Wilson, B. I.
    Magee, D. R.
    Grabsch, H. I.
    West, N. P.
    Quirke, P.
    JOURNAL OF PATHOLOGY, 2022, 256 : S13 - S13
  • [6] Automated Segmentation of Cardiac Chambers from Cine Cardiac MRI Using an Adversarial Network Architecture
    Upendra, Roshan Reddy
    Dangi, Shusil
    Linte, Cristian A.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [7] Fully automated artificial intelligence-based cine cardiac magnetic resonance image quantification
    Kazaj, P. Mohammadi
    Baj, G.
    Schutze, J.
    Berto, M. Boscolo
    Stark, A.
    Valenzuela, W.
    Graeni, C.
    Shiri, I
    EUROPEAN HEART JOURNAL, 2024, 45
  • [8] Fully automated artificial intelligence-based cine cardiac magnetic resonance image quantification
    Kazaj, P. Mohammadi
    Baj, G.
    Schutze, J.
    Berto, M. Boscolo
    Stark, A.
    Valenzuela, W.
    Graeni, C.
    Shiri, I
    EUROPEAN HEART JOURNAL, 2024, 45
  • [9] Fully automated detection of breast cancer in screening MRI using convolutional neural networks
    Dalmis, Mehmet Ufuk
    Vreemann, Suzan
    Kooi, Thijs
    Mann, Ritse M.
    Karssemeijer, Nico
    Gubern-Merida, Albert
    JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
  • [10] A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks
    Upendra, Roshan Reddy
    Simon, Richard
    Linte, Cristian A.
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, 2020, 1248 : 208 - 220