Big data and targeted machine learning in action to assist medical decision in the ICU

被引:39
|
作者
Pirracchio, Romain [1 ,2 ,3 ,4 ]
Cohen, Mitchell J. [5 ]
Malenica, Ivana [1 ]
Cohen, Jonathan [1 ]
Chambaz, Antoine [6 ]
Cannesson, Maxime [7 ,8 ]
Lee, Christine [8 ]
Resche-Rigon, Matthieu [4 ]
Hubbard, Alan [1 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Anesthesia & Perioperat Med, San Francisco, CA 94143 USA
[3] Univ Paris 05, Serv Anesthesie Reanimat, Sorbonne Paris Cite, Hop Europeen Georges Pompidou, F-75015 Paris, France
[4] Univ Paris Diderot, Serv Biostat & Informat Med, Sorbonne Paris Cite, Hop St Louis,Inserm UMR 1153, F-75010 Paris, France
[5] Univ Colorado, Dept Surg, Denver, CO 80202 USA
[6] Univ Paris 05, MAP5 UMR CNRS 8145, F-75006 Paris, France
[7] Univ Calif Los Angeles, Dept Anesthesiol & Perioperat Med, Los Angeles, CA 90024 USA
[8] Univ Calif Irvine, Dept Bioengn, Irvine, CA 92717 USA
关键词
PREDICTION; OUTCOMES; READMISSIONS; UNITS; ARDS; TIME;
D O I
10.1016/j.accpm.2018.09.008
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Historically, personalised medicine has been synonymous with pharmacogenomics and oncology. We argue for a new framework for personalised medicine analytics that capitalises on more detailed patient-level data and leverages recent advances in causal inference and machine learning tailored towards decision support applicable to critically ill patients. We discuss how advances in data technology and statistics are providing new opportunities for asking more targeted questions regarding patient treatment, and how this can be applied in the intensive care unit to better predict patient-centred outcomes, help in the discovery of new treatment regimens associated with improved outcomes, and ultimately how these rules can be learned in real-time for the patient. (C) 2018 Societe francaise d'anesthesie et de reanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [41] Big data algorithms beyond machine learning
    Mnich M.
    KI - Kunstliche Intelligenz, 2018, 32 (01): : 9 - 17
  • [42] Big data and machine learning for materials science
    Rodrigues J.F., Jr.
    Florea L.
    de Oliveira M.C.F.
    Diamond D.
    Oliveira O.N., Jr.
    Discover Materials, 1 (1):
  • [43] A survey of machine learning for big data processing
    Junfei Qiu
    Qihui Wu
    Guoru Ding
    Yuhua Xu
    Shuo Feng
    EURASIP Journal on Advances in Signal Processing, 2016
  • [44] Efficient Machine Learning for Big Data: A Review
    Al-Jarrah, Omar Y.
    Yoo, Paul D.
    Muhaidat, Sami
    Karagiannidis, George K.
    Taha, Kamal
    BIG DATA RESEARCH, 2015, 2 (03) : 87 - 93
  • [45] Big Data, Predictive Analytics and Machine Learning
    Ongsulee, Pariwat
    Chotchaung, Veena
    Bamrungsi, Eak
    Rodcheewit, Thanaporn
    2018 16TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2018, : 37 - 42
  • [46] Machine Learning Research in Big Data Environment
    Jiang, Shi
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2018), 2018, : 227 - 231
  • [47] Automated Trading with Machine Learning on Big Data
    Ruta, Dymitr
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 824 - 830
  • [48] A survey of machine learning for big data processing
    Qiu, Junfei
    Wu, Qihui
    Ding, Guoru
    Xu, Yuhua
    Feng, Shuo
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016,
  • [49] Editorial: Big data and machine learning in sociology
    Leitgoeb, Heinz
    Prandner, Dimitri
    Wolbring, Tobias
    FRONTIERS IN SOCIOLOGY, 2023, 8
  • [50] Big Data and Machine Learning in Health Care
    Beam, Andrew L.
    Kohane, Isaac S.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13): : 1317 - 1318