Big data and targeted machine learning in action to assist medical decision in the ICU

被引:39
|
作者
Pirracchio, Romain [1 ,2 ,3 ,4 ]
Cohen, Mitchell J. [5 ]
Malenica, Ivana [1 ]
Cohen, Jonathan [1 ]
Chambaz, Antoine [6 ]
Cannesson, Maxime [7 ,8 ]
Lee, Christine [8 ]
Resche-Rigon, Matthieu [4 ]
Hubbard, Alan [1 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Anesthesia & Perioperat Med, San Francisco, CA 94143 USA
[3] Univ Paris 05, Serv Anesthesie Reanimat, Sorbonne Paris Cite, Hop Europeen Georges Pompidou, F-75015 Paris, France
[4] Univ Paris Diderot, Serv Biostat & Informat Med, Sorbonne Paris Cite, Hop St Louis,Inserm UMR 1153, F-75010 Paris, France
[5] Univ Colorado, Dept Surg, Denver, CO 80202 USA
[6] Univ Paris 05, MAP5 UMR CNRS 8145, F-75006 Paris, France
[7] Univ Calif Los Angeles, Dept Anesthesiol & Perioperat Med, Los Angeles, CA 90024 USA
[8] Univ Calif Irvine, Dept Bioengn, Irvine, CA 92717 USA
关键词
PREDICTION; OUTCOMES; READMISSIONS; UNITS; ARDS; TIME;
D O I
10.1016/j.accpm.2018.09.008
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Historically, personalised medicine has been synonymous with pharmacogenomics and oncology. We argue for a new framework for personalised medicine analytics that capitalises on more detailed patient-level data and leverages recent advances in causal inference and machine learning tailored towards decision support applicable to critically ill patients. We discuss how advances in data technology and statistics are providing new opportunities for asking more targeted questions regarding patient treatment, and how this can be applied in the intensive care unit to better predict patient-centred outcomes, help in the discovery of new treatment regimens associated with improved outcomes, and ultimately how these rules can be learned in real-time for the patient. (C) 2018 Societe francaise d'anesthesie et de reanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [31] Machine Learning With Big Data: Challenges and Approaches
    L'Heureux, Alexandra
    Grolinger, Katarina
    Elyamany, Hany F.
    Capretz, Miriam A. M.
    IEEE ACCESS, 2017, 5 : 7776 - 7797
  • [32] Machine Learning Meets Big Spatial Data
    Sabek, Ibrahim
    Mokbel, Mohamed F.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (12): : 1982 - 1985
  • [33] Machine Learning Challenges in Big Data Era
    Veganzones-Bodon, Miguel
    DYNA, 2019, 94 (05): : 478 - 479
  • [34] Machine learning in 'big data': handle with care
    Loring, Zak
    Mehrotra, Suchit
    Piccini, Jonathan P.
    EUROPACE, 2019, 21 (09): : 1284 - 1285
  • [35] Machine Learning and Computational Intelligence in Big Data
    Anagnostopoulos, Christos
    Kolomvatsos, Kostas
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (06) : 873 - 874
  • [36] Machine learning on big data: Opportunities and challenges
    Zhou, Lina
    Pan, Shimei
    Wang, Jianwu
    Vasilakos, Athanasios V.
    NEUROCOMPUTING, 2017, 237 : 350 - 361
  • [37] Big Data and Machine Learning Framework in Healthcare
    Dogaru, Delia Ioana
    Dumitrache, Ioan
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [38] PivotalR: A Package for Machine Learning on Big Data
    Qian, Hai
    R JOURNAL, 2014, 6 (01): : 57 - 67
  • [39] Green Computing for Big Data and Machine Learning
    Barua, Hrishav Bakul
    Mondal, Kartick Chandra
    Khatua, Sunirmal
    PROCEEDINGS OF THE 5TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA, CODS COMAD 2022, 2022, : 348 - 351
  • [40] Machine learning for Big Data analytics in plants
    Ma, Chuang
    Zhang, Hao Helen
    Wang, Xiangfeng
    TRENDS IN PLANT SCIENCE, 2014, 19 (12) : 798 - 808