Big data and targeted machine learning in action to assist medical decision in the ICU

被引:39
|
作者
Pirracchio, Romain [1 ,2 ,3 ,4 ]
Cohen, Mitchell J. [5 ]
Malenica, Ivana [1 ]
Cohen, Jonathan [1 ]
Chambaz, Antoine [6 ]
Cannesson, Maxime [7 ,8 ]
Lee, Christine [8 ]
Resche-Rigon, Matthieu [4 ]
Hubbard, Alan [1 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Anesthesia & Perioperat Med, San Francisco, CA 94143 USA
[3] Univ Paris 05, Serv Anesthesie Reanimat, Sorbonne Paris Cite, Hop Europeen Georges Pompidou, F-75015 Paris, France
[4] Univ Paris Diderot, Serv Biostat & Informat Med, Sorbonne Paris Cite, Hop St Louis,Inserm UMR 1153, F-75010 Paris, France
[5] Univ Colorado, Dept Surg, Denver, CO 80202 USA
[6] Univ Paris 05, MAP5 UMR CNRS 8145, F-75006 Paris, France
[7] Univ Calif Los Angeles, Dept Anesthesiol & Perioperat Med, Los Angeles, CA 90024 USA
[8] Univ Calif Irvine, Dept Bioengn, Irvine, CA 92717 USA
关键词
PREDICTION; OUTCOMES; READMISSIONS; UNITS; ARDS; TIME;
D O I
10.1016/j.accpm.2018.09.008
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Historically, personalised medicine has been synonymous with pharmacogenomics and oncology. We argue for a new framework for personalised medicine analytics that capitalises on more detailed patient-level data and leverages recent advances in causal inference and machine learning tailored towards decision support applicable to critically ill patients. We discuss how advances in data technology and statistics are providing new opportunities for asking more targeted questions regarding patient treatment, and how this can be applied in the intensive care unit to better predict patient-centred outcomes, help in the discovery of new treatment regimens associated with improved outcomes, and ultimately how these rules can be learned in real-time for the patient. (C) 2018 Societe francaise d'anesthesie et de reanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [21] A MACHINE LEARNING BASED DECISION SUPPORT FRAMEWORK FOR BIG DATA PIPELINE MODELING AND DESIGN
    Dhaouadi, Asma
    Bousselmi, Khadija
    Monnet, Sebastien
    Gammoud, Mohamed Mohsen
    Hammoudi, Slimane
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2024, 10 (03): : 306 - 318
  • [22] Machine learning for targeted display advertising: transfer learning in action
    Perlich, C.
    Dalessandro, B.
    Raeder, T.
    Stitelman, O.
    Provost, F.
    MACHINE LEARNING, 2014, 95 (01) : 103 - 127
  • [23] Machine learning for targeted display advertising: transfer learning in action
    C. Perlich
    B. Dalessandro
    T. Raeder
    O. Stitelman
    F. Provost
    Machine Learning, 2014, 95 : 103 - 127
  • [24] Opinion: Big Data Elements Key to Medical Imaging Machine Learning Tool Development
    Wu, Dolly Y.
    Vo, Dat T.
    Seiler, Stephen J.
    JOURNAL OF BREAST IMAGING, 2024, 6 (02) : 217 - 219
  • [25] Medical Big Data Analysis Using Machine Learning Algorithms in the Field of Clinical Pharmacy
    Kiryu, Yoshihiro
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2022, 142 (04): : 319 - 326
  • [26] Data analysis in health and big data: A machine learning medical diagnosis model based on patients’ complaints
    Silahtaroğlu, Gökhan
    Yılmaztürk, Nevin
    Communications in Statistics - Theory and Methods, 2021, 50 (07): : 1547 - 1556
  • [27] Data analysis in health and big data: A machine learning medical diagnosis model based on patients' complaints
    Silahtaroglu, Gokhan
    Yilmazturk, Nevin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (07) : 1547 - 1556
  • [28] Machine learning on big data for future computing
    Jeong, Young-Sik
    Hassan, Houcine
    Sangaiah, Arun Kumar
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (06): : 2925 - 2929
  • [29] Machine Learning for Astronomical Big Data Processing
    Xu, Long
    Yan, Yihua
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [30] Machine learning on big data for future computing
    Young-Sik Jeong
    Houcine Hassan
    Arun Kumar Sangaiah
    The Journal of Supercomputing, 2019, 75 : 2925 - 2929