Big data and targeted machine learning in action to assist medical decision in the ICU

被引:39
|
作者
Pirracchio, Romain [1 ,2 ,3 ,4 ]
Cohen, Mitchell J. [5 ]
Malenica, Ivana [1 ]
Cohen, Jonathan [1 ]
Chambaz, Antoine [6 ]
Cannesson, Maxime [7 ,8 ]
Lee, Christine [8 ]
Resche-Rigon, Matthieu [4 ]
Hubbard, Alan [1 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Dept Anesthesia & Perioperat Med, San Francisco, CA 94143 USA
[3] Univ Paris 05, Serv Anesthesie Reanimat, Sorbonne Paris Cite, Hop Europeen Georges Pompidou, F-75015 Paris, France
[4] Univ Paris Diderot, Serv Biostat & Informat Med, Sorbonne Paris Cite, Hop St Louis,Inserm UMR 1153, F-75010 Paris, France
[5] Univ Colorado, Dept Surg, Denver, CO 80202 USA
[6] Univ Paris 05, MAP5 UMR CNRS 8145, F-75006 Paris, France
[7] Univ Calif Los Angeles, Dept Anesthesiol & Perioperat Med, Los Angeles, CA 90024 USA
[8] Univ Calif Irvine, Dept Bioengn, Irvine, CA 92717 USA
关键词
PREDICTION; OUTCOMES; READMISSIONS; UNITS; ARDS; TIME;
D O I
10.1016/j.accpm.2018.09.008
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Historically, personalised medicine has been synonymous with pharmacogenomics and oncology. We argue for a new framework for personalised medicine analytics that capitalises on more detailed patient-level data and leverages recent advances in causal inference and machine learning tailored towards decision support applicable to critically ill patients. We discuss how advances in data technology and statistics are providing new opportunities for asking more targeted questions regarding patient treatment, and how this can be applied in the intensive care unit to better predict patient-centred outcomes, help in the discovery of new treatment regimens associated with improved outcomes, and ultimately how these rules can be learned in real-time for the patient. (C) 2018 Societe francaise d'anesthesie et de reanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:377 / 384
页数:8
相关论文
共 50 条
  • [1] Clinical Decision Making Using Machine Learning and ICU Data
    Tembhurne, Saurabh P.
    Neware, Shubhangi
    HELIX, 2018, 8 (05): : 4082 - 4087
  • [2] What’s new in ICU in 2050: big data and machine learning
    Sébastien Bailly
    Geert Meyfroidt
    Jean-François Timsit
    Intensive Care Medicine, 2018, 44 : 1524 - 1527
  • [3] Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?
    Chaudhry, Farhan
    Hunt, Rachel J.
    Hariharan, Prashant
    Anand, Sharath Kumar
    Sanjay, Surya
    Kjoller, Ellen E.
    Bartlett, Connor M.
    Johnson, Kipp W.
    Levy, Phillip D.
    Noushmehr, Houtan
    Lee, Ian Y.
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [4] What's new in ICU in 2050: big data and machine learning
    Bailly, Sebastien
    Meyfroidt, Geert
    Timsit, Jean-Francois
    INTENSIVE CARE MEDICINE, 2018, 44 (09) : 1524 - 1527
  • [5] Cloud Big Data Decision Support System for Machine Learning on AWS
    Kaplunovich, Alex
    Yesha, Yelena
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 3508 - 3516
  • [6] Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology
    Syeda-Mahmood, Tanveer
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) : 569 - 576
  • [7] A Case Study for a Big Data and Machine Learning Platform to Improve Medical Decision Support in Population Health Management
    Lopez-Martinez, Fernando
    Nunez-Valdez, Edward Rolando
    Garcia-Diaz, Vicente
    Bursac, Zoran
    ALGORITHMS, 2020, 13 (04)
  • [8] Machine Learning in Big Data
    Wang, Lidong
    Alexander, Cheryl Ann
    INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2016, 1 (02) : 52 - 61
  • [9] Machine Learning on Big Data
    Condie, Tyson
    Mineiro, Paul
    Polyzotis, Neoklis
    Weimer, Markus
    2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 1242 - 1244
  • [10] A Data Science Approach to Cost Estimation Decision Making - Big Data and Machine Learning
    Fernandez-Revuelta Perez, Luis
    Romero Blasco, Alvaro
    REVISTA DE CONTABILIDAD-SPANISH ACCOUNTING REVIEW, 2022, 25 (01) : 45 - 57