TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS

被引:56
|
作者
Zhou, J. [1 ]
Hu, X. [2 ]
Zhong, L. [3 ]
Shu, S. [1 ]
Chen, L. [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
two-grid method; Maxwell eigenvalue problem; edge element; FINITE-ELEMENT METHODS; INVERSE ITERATION; MULTILEVEL METHOD; CONVERGENCE; COMPUTATION; EQUATIONS; PRECONDITIONERS; APPROXIMATION; H(CURL); H(DIV);
D O I
10.1137/130919921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17-25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287-1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, save total computational cost. The error estimates reveals that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.
引用
收藏
页码:2027 / 2047
页数:21
相关论文
共 50 条
  • [1] INEXACT TWO-GRID METHODS FOR EIGENVALUE PROBLEMS
    Gu, Qun
    Gao, Weiguo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (06) : 557 - 575
  • [2] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Guo, Hailong
    Zhang, Zhimin
    Zhao, Ren
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 125 - 148
  • [3] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Hailong Guo
    Zhimin Zhang
    Ren Zhao
    Journal of Scientific Computing, 2017, 70 : 125 - 148
  • [4] Two-grid methods for a class of nonlinear elliptic eigenvalue problems
    Cances, Eric
    Chakir, Rachida
    He, Lianhua
    Maday, Yvon
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 605 - 645
  • [5] A two-grid discretization scheme for eigenvalue problems
    Xu, JC
    Zhou, AH
    MATHEMATICS OF COMPUTATION, 2001, 70 (233) : 17 - 25
  • [6] ACCELERATION OF A TWO-GRID METHOD FOR EIGENVALUE PROBLEMS
    Hu, Xiaozhe
    Cheng, Xiaoliang
    MATHEMATICS OF COMPUTATION, 2011, 80 (275) : 1287 - 1301
  • [7] TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS
    Yang, Yidu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (06) : 748 - 763
  • [8] TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS
    Yidu Yang School of Mathematics and Computer Science
    JournalofComputationalMathematics, 2009, 27 (06) : 748 - 763
  • [9] Two-grid discretization schemes based on the filter approach for the Maxwell eigenvalue problem
    Zhang, Yu
    Wang, Wenjun
    Yang, Yidu
    SECOND SREE CONFERENCE ON ENGINEERING MODELLING AND SIMULATION (CEMS 2012), 2012, 37 : 143 - 149
  • [10] A two-grid discretization scheme for semilinear elliptic eigenvalue problems
    Chien, CS
    Jeng, BW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04): : 1287 - 1304