A two-grid discretization scheme for semilinear elliptic eigenvalue problems

被引:46
|
作者
Chien, CS [1 ]
Jeng, BW [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Appl Math, Taichung 402, Taiwan
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 27卷 / 04期
关键词
two-grid scheme; linear eigenvalue problems; nonlinear eigenvalue problems; continuation method; finite element method; singular points;
D O I
10.1137/030602447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a two-grid finite element discretization scheme with a two-loop continuation algorithm for tracing solution branches of semilinear elliptic eigenvalue problems. First we use the predictor-corrector continuation method to compute an approximating point for the solution curve on the coarse grid. Then we use this approximating point as a predicted point for the solution curve on the. ne grid. In the corrector step we solve the first and the second order approximations of the nonlinear PDE to obtain corrections for the state variable on the. ne grid and the coarse grid, respectively. The continuation parameter is updated by computing the Rayleigh quotient on the. ne space. To guarantee the approximating point we just obtained lies on the solution curve, we perform Newton's method. We repeat the process described above until the solution curve on the. ne space is obtained. We show how the singular points, such as folds and bifurcation points, can be well approximated. Comprehensive numerical experiments show that the two-grid finite element discretization scheme with a two-loop continuation algorithm is efficient and robust for solving second order semilinear elliptic eigenvalue problems.
引用
收藏
页码:1287 / 1304
页数:18
相关论文
共 50 条
  • [1] A two-grid discretization scheme for eigenvalue problems
    Xu, JC
    Zhou, AH
    MATHEMATICS OF COMPUTATION, 2001, 70 (233) : 17 - 25
  • [2] A two-grid finite element discretization scheme for nonlinear eigenvalue problems
    Chien, C. -S.
    Jeng, B. -W.
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1951 - +
  • [3] A two-grid discretization scheme for optimal control problems of elliptic equations
    Huipo Liu
    Shuanghu Wang
    Numerical Algorithms, 2017, 74 : 699 - 716
  • [4] A two-grid discretization scheme for optimal control problems of elliptic equations
    Liu, Huipo
    Wang, Shuanghu
    NUMERICAL ALGORITHMS, 2017, 74 (03) : 699 - 716
  • [5] A two-grid discretization scheme for the Steklov eigenvalue problem
    Li Q.
    Yang Y.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 129 - 139
  • [6] Two-grid virtual element discretization of semilinear elliptic problem
    Chen, Fengxin
    Wang, Qiming
    Zhou, Zhaojie
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 228 - 240
  • [7] A two-grid discretization scheme for a sort of Steklov eigenvalue problem
    Xia, Chao
    Yang, Yidu
    Bi, Hai
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2087 - 2091
  • [8] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Guo, Hailong
    Zhang, Zhimin
    Zhao, Ren
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 125 - 148
  • [9] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Hailong Guo
    Zhimin Zhang
    Ren Zhao
    Journal of Scientific Computing, 2017, 70 : 125 - 148
  • [10] TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS
    Yang, Yidu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (06) : 748 - 763