TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS

被引:0
|
作者
Yidu Yang School of Mathematics and Computer Science
机构
基金
中国国家自然科学基金;
关键词
Nonconforming finite elements; Rayleigh quotient; Two-grid schemes; The lower bounds of eigenvalue; High accuracy;
D O I
暂无
中图分类号
O175.9 [特征值及特征值函数问题];
学科分类号
070104 ;
摘要
This paper extends the two-grid discretization scheme of the conforming finite elementsproposed by Xu and Zhou (Math. Comput., 70 (2001), pp.17-25) to the nonconformingfinite elements for eigenvalue problems. In particular, two two-grid discretization schemesbased on Rayleigh quotient technique are proposed. By using these new schemes, thesolution of an eigenvalue problem on a fine mesh is reduced to that on a much coarsermesh together with the solution of a linear algebraic system on the fine mesh. The resultingsolution still maintains an asymptotically optimal accuracy. Comparing with the two-griddiscretization scheme of the conforming finite elements, the main advantages of our newschemes are twofold when the mesh size is small enough. First, the lower bounds of theexact eigenvalues in our two-grid discretization schemes can be obtained. Second, the firsteigenvalue given by the new schemes has much better accuracy than that obtained bysolving the eigenvalue problems on the fine mesh directly.
引用
收藏
页码:748 / 763
页数:16
相关论文
共 50 条
  • [1] TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS
    Yang, Yidu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (06) : 748 - 763
  • [2] A two-grid discretization scheme for eigenvalue problems
    Xu, JC
    Zhou, AH
    MATHEMATICS OF COMPUTATION, 2001, 70 (233) : 17 - 25
  • [3] A two-grid discretization scheme for semilinear elliptic eigenvalue problems
    Chien, CS
    Jeng, BW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04): : 1287 - 1304
  • [4] Two-grid discretization schemes based on the filter approach for the Maxwell eigenvalue problem
    Zhang, Yu
    Wang, Wenjun
    Yang, Yidu
    SECOND SREE CONFERENCE ON ENGINEERING MODELLING AND SIMULATION (CEMS 2012), 2012, 37 : 143 - 149
  • [5] A two-grid finite element discretization scheme for nonlinear eigenvalue problems
    Chien, C. -S.
    Jeng, B. -W.
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1951 - +
  • [6] A two-grid discretization scheme for the Steklov eigenvalue problem
    Li Q.
    Yang Y.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 129 - 139
  • [7] TWO-GRID FINITE ELEMENT DISCRETIZATION SCHEMES BASED ON SHIFTED-INVERSE POWER METHOD FOR ELLIPTIC EIGENVALUE PROBLEMS
    Yang, Yidu
    Bi, Hai
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1602 - 1624
  • [8] The two-grid discretization of Ciarlet-Raviart mixed method for biharmonic eigenvalue problems
    Zhang, Yu
    Bi, Hai
    Yang, Yidu
    APPLIED NUMERICAL MATHEMATICS, 2019, 138 : 94 - 113
  • [9] Two-grid discretization schemes for nonlinear Schrodinger equations
    Chien, C. -S.
    Huang, H. -T.
    Jeng, B. -W.
    Li, Z. -C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 214 (02) : 549 - 571
  • [10] A two-grid discretization scheme for a sort of Steklov eigenvalue problem
    Xia, Chao
    Yang, Yidu
    Bi, Hai
    ADVANCED MATERIALS AND PROCESSES II, PTS 1-3, 2012, 557-559 : 2087 - 2091