TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS

被引:56
|
作者
Zhou, J. [1 ]
Hu, X. [2 ]
Zhong, L. [3 ]
Shu, S. [1 ]
Chen, L. [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
two-grid method; Maxwell eigenvalue problem; edge element; FINITE-ELEMENT METHODS; INVERSE ITERATION; MULTILEVEL METHOD; CONVERGENCE; COMPUTATION; EQUATIONS; PRECONDITIONERS; APPROXIMATION; H(CURL); H(DIV);
D O I
10.1137/130919921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17-25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287-1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, save total computational cost. The error estimates reveals that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.
引用
收藏
页码:2027 / 2047
页数:21
相关论文
共 50 条
  • [41] Modified Two-Grid Algorithm for Nonlinear Power-Law Conductivity in Maxwell's Problems with High Accuracy
    Yao, Changhui
    Li, Yanfei
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (02) : 481 - 502
  • [42] A NEW SEMIALGEBRAIC TWO-GRID METHOD FOR OSEEN PROBLEMS
    Bacq, Pierre-Loic
    Notay, Yvan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : S226 - S253
  • [43] Two-grid method for regularized frictional elastostatics problems
    Lebon, F
    ENGINEERING COMPUTATIONS, 1995, 12 (07) : 657 - 664
  • [44] Substructured two-grid and multi-grid domain decomposition methods
    Ciaramella, G.
    Vanzan, T.
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 413 - 448
  • [45] Substructured two-grid and multi-grid domain decomposition methods
    G. Ciaramella
    T. Vanzan
    Numerical Algorithms, 2022, 91 : 413 - 448
  • [46] Iterative two-grid methods for semilinear elliptic equations
    Zhang, Weifeng
    Fan, Ronghong
    Zhong, Liuqiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (03) : 522 - 530
  • [47] TWO-GRID DEFLATED KRYLOV METHODS FOR LINEAR EQUATIONS
    Morgan, Ronald B.
    Whyte, Travis
    Wilcox, Walter
    Yang, Zhao
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2025, 63 : 129 - 149
  • [48] Superconvergence analysis of two-grid methods for bacteria equations
    Shi, Dongyang
    Li, Chaoqun
    NUMERICAL ALGORITHMS, 2021, 86 (01) : 123 - 152
  • [49] Algebraic analysis of two-grid methods: The nonsymmetric case
    Notay, Yvan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (01) : 73 - 96
  • [50] Convergence analysis of perturbed two-grid and multigrid methods
    Notay, Yvan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1035 - 1044