Edge-disjoint spanning trees and eigenvalues

被引:20
|
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [1] Edge-disjoint spanning trees and eigenvalues of graphs
    Li, Guojun
    Shi, Lingsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2784 - 2789
  • [2] Note on edge-disjoint spanning trees and eigenvalues
    Liu, Qinghai
    Hong, Yanmei
    Gu, Xiaofeng
    Lai, Hong-Jian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 128 - 133
  • [3] Edge-disjoint spanning trees and eigenvalues of regular graphs
    Cioaba, Sebastian M.
    Wong, Wiseley
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 630 - 647
  • [4] Edge-Disjoint Spanning Trees, Edge Connectivity, and Eigenvalues in Graphs
    Gu, Xiaofeng
    Lai, Hong-Jian
    Li, Ping
    Yao, Senmei
    JOURNAL OF GRAPH THEORY, 2016, 81 (01) : 16 - 29
  • [5] A property on edge-disjoint spanning trees
    Lai, HJ
    Lai, HY
    Payan, C
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (05) : 447 - 450
  • [6] On edge-disjoint spanning trees in hypercubes
    Barden, B
    Libeskind-Hadas, R
    Davis, J
    Williams, W
    INFORMATION PROCESSING LETTERS, 1999, 70 (01) : 13 - 16
  • [7] On edge-disjoint spanning trees in hypercubes
    Department of Computer Science, Harvey Mudd College, 301 E. 12th Street, Claremont, CA 91711, United States
    Inf. Process. Lett., 1 (13-16):
  • [8] Edge-connectivity and edge-disjoint spanning trees
    Catlin, Paul A.
    Lai, Hong-Jian
    Shao, Yehong
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1033 - 1040
  • [9] CONNECTIVITY AND EDGE-DISJOINT SPANNING-TREES
    GUSFIELD, D
    INFORMATION PROCESSING LETTERS, 1983, 16 (02) : 87 - 89
  • [10] On edge-disjoint spanning trees with small depths
    Hasunuma, T
    INFORMATION PROCESSING LETTERS, 2000, 75 (1-2) : 71 - 74