Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

被引:46
|
作者
Schiavazzi, Daniele E. [1 ]
Baretta, Alessia [2 ]
Pennati, Giancarlo [2 ]
Hsia, Tain-Yen [3 ,4 ]
Marsden, Alison L. [5 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Politecn Milan, Dept Chem Mat & Chem Engn, Milan, Italy
[3] Great Ormond St Hosp Sick Children, London, England
[4] UCL Inst Cardiovasc Sci, London, England
[5] Stanford Univ, Dept Pediat Bioengn & ICME, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; lumped circulation models; patient-specific data assimilation; uncertainty analysis of simulated physiology; single-ventricle surgery; Norwood procedure; ARTIFICIAL-HEART CONTROL; SYSTEMIC VASCULAR BED; CHAIN MONTE-CARLO; CARDIOVASCULAR-SYSTEM; COMPUTER-SIMULATION; ADAPTIVE MCMC; DIFFERENTIAL EVOLUTION; FUNCTION MINIMIZATION; METROPOLIS-HASTINGS; MATHEMATICAL-MODEL;
D O I
10.1002/cnm.2799
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] A single-cell based precision medicine approach using glioblastoma patient-specific models
    Park, James H.
    Feroze, Abdullah H.
    Emerson, Samuel N.
    Mihalas, Anca B.
    Keene, C. Dirk
    Cimino, Patrick J.
    de Lomana, Adrian Lopez Garcia
    Kannan, Kavya
    Wu, Wei-Ju
    Turkarslan, Serdar
    Baliga, Nitin S.
    Patel, Anoop P.
    NPJ PRECISION ONCOLOGY, 2022, 6 (01)
  • [42] Differentiated knowledge distillation: Patient-specific single-sample personalization for electrocardiogram diagnostic models
    Wei, Xiaoyang
    Li, Zhiyuan
    Tian, Yuanyuan
    Wang, Mengxiao
    Liu, Jinlei
    Jin, Yanrui
    Ding, Weiping
    Liu, Chengliang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [43] A single-cell based precision medicine approach using glioblastoma patient-specific models
    James H. Park
    Abdullah H. Feroze
    Samuel N. Emerson
    Anca B. Mihalas
    C. Dirk Keene
    Patrick J. Cimino
    Adrian Lopez Garcia de Lomana
    Kavya Kannan
    Wei-Ju Wu
    Serdar Turkarslan
    Nitin S. Baliga
    Anoop P. Patel
    npj Precision Oncology, 6
  • [44] Inverse material parameter estimation of patient-specific finite element models at the carotid bifurcation: The impact of excluding the zero-pressure configuration and residual stress
    Johnston, Robert D.
    Ghasemi, Milad
    Lally, Caitriona
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (01)
  • [45] A SINGLE-CELL BASED PRECISION MEDICINE APPROACH USING GLIOBLASTOMA PATIENT-SPECIFIC MODELS
    Feroze, Abdullah
    Park, James
    Emerson, Samuel
    Mihalas, Anca
    Keene, Dirk
    Cimino, Patrick
    Lopez, Adrian
    de Lomana, Garcia
    Kannan, Kavya
    Wu, Wei-Ju
    Turkarslan, Serdar
    Baliga, Nitin
    Patel, Anoop
    NEURO-ONCOLOGY, 2021, 23 : 6 - 7
  • [46] Predictive digital twin for optimizing patient-specific radiotherapy regimens under uncertainty in high-grade gliomas
    Chaudhuri, Anirban
    Pash, Graham
    Hormuth II, David A.
    Lorenzo, Guillermo
    Kapteyn, Michael
    Wu, Chengyue
    Lima, Ernesto A. B. F.
    Yankeelov, Thomas E.
    Willcox, Karen
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [47] Patient-specific in vivo right ventricle material parameter estimation for patients with tetralogy of fallot using MRI-Based models with different zero-load diastole and systole morphologies (vol 276, pg 93, 2019)
    Yu, Han
    del Nido, Pedro J.
    Geva, Tal
    Yang, Chun
    Tang, Alexander
    Wu, Zheyang
    Rathod, Rahul H.
    Huang, Xueying
    Billiar, Kristen L.
    Tang, Dalin
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2020, 303 : 87 - 87
  • [48] Patient-specific cranio-spinal compliance distribution using lumped-parameter model: its relation with ICP over a wide age range
    Ritambhar Burman
    Noam Alperin
    Sang H. Lee
    Brigit Ertl-Wagner
    Fluids and Barriers of the CNS, 15
  • [49] Predicting patient-specific single-cell parameters in computational cardiac models using machine learning
    Lee, Lucas
    Moreno, Jonathan D.
    Silva, Jonathan R.
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 381A - 381A
  • [50] Patient-specific cranio-spinal compliance distribution using lumped-parameter model: its relation with ICP over a wide age range
    Burman, Ritambhar
    Alperin, Noam
    Lee, Sang H.
    Ertl-Wagner, Brigit
    FLUIDS AND BARRIERS OF THE CNS, 2018, 15