Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

被引:46
|
作者
Schiavazzi, Daniele E. [1 ]
Baretta, Alessia [2 ]
Pennati, Giancarlo [2 ]
Hsia, Tain-Yen [3 ,4 ]
Marsden, Alison L. [5 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Politecn Milan, Dept Chem Mat & Chem Engn, Milan, Italy
[3] Great Ormond St Hosp Sick Children, London, England
[4] UCL Inst Cardiovasc Sci, London, England
[5] Stanford Univ, Dept Pediat Bioengn & ICME, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; lumped circulation models; patient-specific data assimilation; uncertainty analysis of simulated physiology; single-ventricle surgery; Norwood procedure; ARTIFICIAL-HEART CONTROL; SYSTEMIC VASCULAR BED; CHAIN MONTE-CARLO; CARDIOVASCULAR-SYSTEM; COMPUTER-SIMULATION; ADAPTIVE MCMC; DIFFERENTIAL EVOLUTION; FUNCTION MINIMIZATION; METROPOLIS-HASTINGS; MATHEMATICAL-MODEL;
D O I
10.1002/cnm.2799
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Construction of patient-specific computational models for organ dose estimation in radiological imaging
    Xie, Tianwu
    Akhavanallaf, Azadeh
    Zaidi, Habib
    MEDICAL PHYSICS, 2019, 46 (05) : 2403 - 2411
  • [32] Patient-specific in vivo right ventricle material parameter estimation for patients with tetralogy of Fallot using MRI-based models with different zero-load diastole and systole morphologies
    Yu, Han
    del Nido, Pedro J.
    Geva, Tal
    Yang, Chun
    Tang, Alexander
    Wu, Zheyang
    Rathod, Rahul H.
    Huang, Xueying
    Billiar, Kristen L.
    Tang, Dalin
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2019, 276 : 93 - 99
  • [33] Patient-Specific Parameter Estimation for a Transversely Isotropic Active Strain Model of Left Ventricular Mechanics
    Gjerald, Sjur
    Hake, Johan
    Pezzuto, Simone
    Sundnes, Joakim
    Wall, Samuel T.
    Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges, 2015, 8896 : 93 - 104
  • [34] Central arterial pressure and patient-specific model parameter estimation based on radial pressure measurements
    Gyurki, Daniel
    Horvath, Tamas
    Till, Sara
    Egri, Attila
    Celeng, Csilla
    Paal, Gyorgy
    Merkely, Bela
    Maurovich-Horvat, Pal
    Halasz, Gabor
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2023, 26 (11) : 1320 - 1329
  • [35] VIBRATIONAL BEHAVIOR OF EPICYCLIC GEAR TRAINS WITH LUMPED-PARAMETER MODELS: ANALYSIS AND DESIGN OPTIMIZATION UNDER UNCERTAINTY
    Wehrle, Erich
    Palomba, Ilaria
    Vidoni, Renato
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 6, 2018,
  • [36] Use of Extrathoracic Deposition Models for Patient-Specific Dose Estimation during Inhaler Design
    Carrigy, Nicholas B.
    Martin, Andrew R.
    Finlay, Warren H.
    CURRENT PHARMACEUTICAL DESIGN, 2015, 21 (27) : 3984 - 3992
  • [37] Impact of extra-anatomical bypass on coarctation fluid dynamics using patient-specific lumped parameter and Lattice Boltzmann modeling
    Sadeghi, Reza
    Tomka, Benjamin
    Khodaei, Seyedvahid
    Daeian, MohammadAli
    Gandhi, Krishna
    Garcia, Julio
    Keshavarz-Motamed, Zahra
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Impact of extra-anatomical bypass on coarctation fluid dynamics using patient-specific lumped parameter and Lattice Boltzmann modeling
    Reza Sadeghi
    Benjamin Tomka
    Seyedvahid Khodaei
    MohammadAli Daeian
    Krishna Gandhi
    Julio Garcia
    Zahra Keshavarz-Motamed
    Scientific Reports, 12
  • [39] Assessment of uncertainty in future performance predictions by lumped-parameter models for single-phase liquid geothermal systems
    Tureyen, Omer Inanc
    Kirmaci, Ayse
    Onur, Mustafa
    GEOTHERMICS, 2014, 51 : 300 - 311
  • [40] Efficient estimation for patient-specific rates of disease progression using nonnormal linear mixed models
    Zhang, Peng
    Song, Peter X. -K.
    Qu, Annie
    Greene, Tom
    BIOMETRICS, 2008, 64 (01) : 29 - 38