Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

被引:46
|
作者
Schiavazzi, Daniele E. [1 ]
Baretta, Alessia [2 ]
Pennati, Giancarlo [2 ]
Hsia, Tain-Yen [3 ,4 ]
Marsden, Alison L. [5 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Politecn Milan, Dept Chem Mat & Chem Engn, Milan, Italy
[3] Great Ormond St Hosp Sick Children, London, England
[4] UCL Inst Cardiovasc Sci, London, England
[5] Stanford Univ, Dept Pediat Bioengn & ICME, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; lumped circulation models; patient-specific data assimilation; uncertainty analysis of simulated physiology; single-ventricle surgery; Norwood procedure; ARTIFICIAL-HEART CONTROL; SYSTEMIC VASCULAR BED; CHAIN MONTE-CARLO; CARDIOVASCULAR-SYSTEM; COMPUTER-SIMULATION; ADAPTIVE MCMC; DIFFERENTIAL EVOLUTION; FUNCTION MINIMIZATION; METROPOLIS-HASTINGS; MATHEMATICAL-MODEL;
D O I
10.1002/cnm.2799
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Diagnostic Performance of On-Site Coronary CT Angiography-derived Fractional Flow Reserve Based on Patient-specific Lumped Parameter Models
    van Hamersvelt, Robbert W.
    Voskuil, Michiel
    de Jong, Pim A.
    Willemink, Martin J.
    Isgum, Ivana
    Leiner, Tim
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2019, 1 (04):
  • [22] 2D/3D Reconstruction of Patient-Specific Surface Models and Uncertainty Estimation via Posterior Shape Models
    Sun, Wenyuan
    Zhao, Yuyun
    Liu, Jihao
    Zheng, Guoyan
    12TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, VOL 2, APCMBE 2023, 2024, 104 : 121 - 127
  • [23] Mechanical Cavopulmonary Assistance of a Patient-Specific Fontan Physiology: Numerical Simulations, Lumped Parameter Modeling, and Suction Experiments
    Throckmorton, Amy L.
    Carr, James P.
    Tahir, Sharjeel A.
    Tate, Ryan
    Downs, Emily A.
    Bhavsar, Sonya S.
    Wu, Yi
    Grizzard, John D.
    Moskowitz, William B.
    ARTIFICIAL ORGANS, 2011, 35 (11) : 1036 - 1047
  • [24] Impact of mixed valvular disease on coarctation hemodynamics using patient-specific lumped parameter and Lattice Boltzmann modeling
    Sadeghi, Reza
    Gasner, Nadav
    Khodaei, Seyedvahid
    Garcia, Julio
    Keshavarz-Motamed, Zahra
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 217
  • [25] Erratum to: Pulmonary Hemodynamics Simulations Before Stage 2 Single Ventricle Surgery: Patient-Specific Parameter Identification and Clinical Data Assessment
    Gregory Arbia
    Chiara Corsini
    Catriona Baker
    Giancarlo Pennati
    Tain-Yen Hsia
    Irene E. Vignon-Clementel
    Cardiovascular Engineering and Technology, 2016, 7 : 102 - 102
  • [26] Estimation of anisotropic properties of CMR patient-specific left ventricle using the virtual field method
    Mehdi Ghafarinatanzi
    Delphine Perie
    Biomechanics and Modeling in Mechanobiology, 2023, 22 : 695 - 710
  • [27] Estimation of anisotropic properties of CMR patient-specific left ventricle using the virtual field method
    Ghafarinatanzi, Mehdi
    Perie, Delphine
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2023, 22 (02) : 695 - 710
  • [28] Extraction of Liver Vessel Centerlines under Guidance of Patient-Specific Models
    Huang, Xishi
    Zaheer, Sameer
    Abdalbari, Anwar
    Looi, Thomas
    Ren, Jing
    Drake, James
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2347 - 2350
  • [29] An ensemble Kalman filter approach to parameter estimation for patient-specific cardiovascular flow modeling
    Canuto, Daniel
    Pantoja, Joe L.
    Han, Joyce
    Dutson, Erik P.
    Eldredge, Jeff D.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (04) : 521 - 544
  • [30] An ensemble Kalman filter approach to parameter estimation for patient-specific cardiovascular flow modeling
    Daniel Canuto
    Joe L. Pantoja
    Joyce Han
    Erik P. Dutson
    Jeff D. Eldredge
    Theoretical and Computational Fluid Dynamics, 2020, 34 : 521 - 544