Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

被引:46
|
作者
Schiavazzi, Daniele E. [1 ]
Baretta, Alessia [2 ]
Pennati, Giancarlo [2 ]
Hsia, Tain-Yen [3 ,4 ]
Marsden, Alison L. [5 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Politecn Milan, Dept Chem Mat & Chem Engn, Milan, Italy
[3] Great Ormond St Hosp Sick Children, London, England
[4] UCL Inst Cardiovasc Sci, London, England
[5] Stanford Univ, Dept Pediat Bioengn & ICME, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Bayesian estimation; lumped circulation models; patient-specific data assimilation; uncertainty analysis of simulated physiology; single-ventricle surgery; Norwood procedure; ARTIFICIAL-HEART CONTROL; SYSTEMIC VASCULAR BED; CHAIN MONTE-CARLO; CARDIOVASCULAR-SYSTEM; COMPUTER-SIMULATION; ADAPTIVE MCMC; DIFFERENTIAL EVOLUTION; FUNCTION MINIMIZATION; METROPOLIS-HASTINGS; MATHEMATICAL-MODEL;
D O I
10.1002/cnm.2799
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] A patient-specific lumped-parameter model of coronary circulation
    Zheng Duanmu
    Min Yin
    Fan, Xueling
    Yang, Xilan
    Luo, Xiaoyu
    SCIENTIFIC REPORTS, 2018, 8
  • [2] A patient-specific lumped-parameter model of coronary circulation
    Zheng Duanmu
    Min Yin
    Xueling Fan
    Xilan Yang
    Xiaoyu Luo
    Scientific Reports, 8
  • [3] The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations
    Louis Garber
    Seyedvahid Khodaei
    Zahra Keshavarz-Motamed
    Archives of Computational Methods in Engineering, 2022, 29 : 2977 - 3000
  • [4] The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations
    Garber, Louis
    Khodaei, Seyedvahid
    Keshavarz-Motamed, Zahra
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (05) : 2977 - 3000
  • [5] Data assimilation and modelling of patient-specific single-ventricle physiology with and without valve regurgitation
    Pant, Sanjay
    Corsini, Chiara
    Baker, Catriona
    Hsia, Tain-Yen
    Pennati, Giancarlo
    Vignon-Clementel, Irene E.
    JOURNAL OF BIOMECHANICS, 2016, 49 (11) : 2162 - 2173
  • [6] An interactive simulation tool for patient-specific clinical decision support in single-ventricle physiology
    Conover, Timothy
    Hlavacek, Anthony M.
    Migliavacca, Francesco
    Kung, Ethan
    Dorfman, Adam
    Figliola, Richard S.
    Hsia, Tain-Yen
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (02): : 712 - 721
  • [7] A PATIENT-SPECIFIC LUMPED PARAMETER MODEL OF HUMAN PENILE ERECTION
    Pekkan, K.
    Erturk, H.
    Culha, M. G.
    Serefoglu, E. C.
    JOURNAL OF SEXUAL MEDICINE, 2017, 14 (01): : S128 - S128
  • [8] A parameter estimation framework for patient-specific hemodynamic computations
    Itu, Lucian
    Sharma, Puneet
    Passerini, Tiziano
    Kamen, Ali
    Suciu, Constantin
    Comaniciu, Dorin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 316 - 333
  • [9] Optimization framework for patient-specific modeling under uncertainty
    Mineroff, Joshua
    Pokuri, Balaji Sesha Sarath
    Ganapathysubramanian, Baskar
    Krishnamurthy, Adarsh
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2023, 39 (02)
  • [10] ECHOCARDIOGRAPHIC ASSESSMENT OF A PATIENT WITH SINGLE-VENTRICLE FONTAN CIRCULATION PRESENTING WITH DYSPNEA AND ALTERED MENTAL STATUS
    Stojanovic, Nikola
    Balaji, Adarsh
    Chandrakumar, Harshith
    Choudhary, Khushal
    Saith, Sunil
    Small, Adam
    CHEST, 2024, 166 (04) : 4019A - 4020A