Cramer-Rao Bound for Intravoxel Incoherent Motion Diffusion Weighted Imaging Fitting

被引:0
|
作者
Zhang, Qinwei [1 ]
Wang, Yi-Xiang [1 ]
Ma, Heather Ting [2 ]
Yuan, Jing [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Shatin, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Harbin, Peoples R China
关键词
HUMAN BRAIN;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The precision of parameter estimation for Intravoxel Incoherent Motion Diffusion Weighted Imaging (IVIM-DWI) was investigated by examining their Cramer-Rao bounds (CRBs) under the presence of Rician noise. Monte Carlo (MC) simulation was also conducted to validate the CRB results. The estimation uncertainties of true diffusion coefficient (D) and perfusion fraction (f(0)) could reach 3.89% and 11.65% respectively with typical parameter values at a moderate signal-to-noise ratio (SNR) of 40. However, to estimate pseudo diffusion coefficient (D*) within 10% uncertainty requires SNR>122. The results also showed that the estimation precision of each parameter is not only dependent on SNR but also their true values, while this mutual dependency is complicated. Under some particular cases, estimation uncertainty for certain parameters might be smaller than 5% at a moderate SNR of 40. However, the simultaneous precise estimation for all three parameters is theoretically difficult and highly SNR demanding.
引用
收藏
页码:511 / 514
页数:4
相关论文
共 50 条
  • [41] Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer’s disease
    Nengzhi Xia
    Yanxuan Li
    Yingnan Xue
    Weikang Li
    Zhenhua Zhang
    Caiyun Wen
    Jiance Li
    Qiong Ye
    Brain Imaging and Behavior, 2022, 16 : 617 - 626
  • [42] THE BAYESIAN CRAMER-RAO LOWER BOUND IN PHOTOMETRY
    Espinosa, Sebastian
    Silva, Jorge F.
    Mendez, Rene A.
    Orchard, Marcos
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 50 - 51
  • [43] Cramer-Rao bound of laser Doppler anemometer
    Shu, WQ
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2001, 50 (06) : 1770 - 1772
  • [44] Cramer-Rao Bound Analog of Bayes' Rule
    Zachariah, Dave
    Stoica, Petre
    IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) : 164 - 168
  • [45] Cramer-Rao Bound Under Norm Constraint
    Nitzan, Eyal
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (09) : 1393 - 1397
  • [47] Hybrid Cramer-Rao Bound for Moving Array
    Xie, Da
    Niu, Tingting
    Huang, Jianguo
    Ge, Hongya
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 274 - +
  • [48] A fresh look at the Semiparametric Cramer-Rao Bound
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria
    Zoubir, Abdelhak M.
    Rangaswamy, Muralidhar
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 261 - 265
  • [49] DOPPLER FREQUENCY ESTIMATION AND THE CRAMER-RAO BOUND
    BAMLER, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (03): : 385 - 390
  • [50] On the Cramer-Rao bound under parametric constraints
    Stoica, P
    Ng, BC
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (07) : 177 - 179