Cramer-Rao Bound for Intravoxel Incoherent Motion Diffusion Weighted Imaging Fitting

被引:0
|
作者
Zhang, Qinwei [1 ]
Wang, Yi-Xiang [1 ]
Ma, Heather Ting [2 ]
Yuan, Jing [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Shatin, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Harbin, Peoples R China
关键词
HUMAN BRAIN;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The precision of parameter estimation for Intravoxel Incoherent Motion Diffusion Weighted Imaging (IVIM-DWI) was investigated by examining their Cramer-Rao bounds (CRBs) under the presence of Rician noise. Monte Carlo (MC) simulation was also conducted to validate the CRB results. The estimation uncertainties of true diffusion coefficient (D) and perfusion fraction (f(0)) could reach 3.89% and 11.65% respectively with typical parameter values at a moderate signal-to-noise ratio (SNR) of 40. However, to estimate pseudo diffusion coefficient (D*) within 10% uncertainty requires SNR>122. The results also showed that the estimation precision of each parameter is not only dependent on SNR but also their true values, while this mutual dependency is complicated. Under some particular cases, estimation uncertainty for certain parameters might be smaller than 5% at a moderate SNR of 40. However, the simultaneous precise estimation for all three parameters is theoretically difficult and highly SNR demanding.
引用
收藏
页码:511 / 514
页数:4
相关论文
共 50 条
  • [31] Cramer-Rao Bound for a Sparse Complex Model
    Florescu, Anisia
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Ciochina, Silviu
    2014 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2014,
  • [32] The Cramer-Rao bound applied to image fusion
    Blum, RS
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 507 - 514
  • [33] On the Cramer-Rao Bound for Sparse Linear Arrays
    Friedlander, B.
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 1255 - 1259
  • [34] On the Cramer-Rao bound for polynomial phase signals
    McKilliam, Robby
    Pollok, Andre
    SIGNAL PROCESSING, 2014, 95 : 27 - 31
  • [35] On the achievability of the Cramer-Rao bound for Poisson distribution
    Aharoni, R
    Lee, D
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 2096 - 2100
  • [36] Cramer-Rao bound conditioned by the energy detector
    Chaumette, Eric
    Larzabal, Pascal
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (07) : 477 - 480
  • [37] On the generalized Cramer-Rao bound for the estimation of the location
    Batalama, SN
    Kazakos, D
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 487 - 492
  • [38] CRAMER-RAO BOUND FOR FINITE STREAMS OF PULSES
    Bernhardt, Stephanie
    Boyer, Remy
    Marcos, Sylvie
    Eldar, Yonina C.
    Larzabal, Pascal
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 984 - 988
  • [39] MSE bounds dominating the Cramer-Rao bound
    Eldar, Yonina C.
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 491 - 496
  • [40] Diffusion-Weighted Intravoxel Incoherent Motion Imaging of Renal Tumors With Histopathologic Correlation
    Chandarana, Hersh
    Kang, Stella K.
    Wong, Samson
    Rusinek, Henry
    Zhang, Jeff L.
    Arizono, Shigeki
    Huang, William C.
    Melamed, Jonathan
    Babb, James S.
    Suan, Edgar F.
    Lee, Vivian S.
    Sigmund, Eric E.
    INVESTIGATIVE RADIOLOGY, 2012, 47 (12) : 688 - 696