Cramer-Rao Bound for Intravoxel Incoherent Motion Diffusion Weighted Imaging Fitting

被引:0
|
作者
Zhang, Qinwei [1 ]
Wang, Yi-Xiang [1 ]
Ma, Heather Ting [2 ]
Yuan, Jing [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Shatin, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Harbin, Peoples R China
关键词
HUMAN BRAIN;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The precision of parameter estimation for Intravoxel Incoherent Motion Diffusion Weighted Imaging (IVIM-DWI) was investigated by examining their Cramer-Rao bounds (CRBs) under the presence of Rician noise. Monte Carlo (MC) simulation was also conducted to validate the CRB results. The estimation uncertainties of true diffusion coefficient (D) and perfusion fraction (f(0)) could reach 3.89% and 11.65% respectively with typical parameter values at a moderate signal-to-noise ratio (SNR) of 40. However, to estimate pseudo diffusion coefficient (D*) within 10% uncertainty requires SNR>122. The results also showed that the estimation precision of each parameter is not only dependent on SNR but also their true values, while this mutual dependency is complicated. Under some particular cases, estimation uncertainty for certain parameters might be smaller than 5% at a moderate SNR of 40. However, the simultaneous precise estimation for all three parameters is theoretically difficult and highly SNR demanding.
引用
收藏
页码:511 / 514
页数:4
相关论文
共 50 条
  • [21] An Intravoxel Incoherent Motion Diffusion-Weighted Imaging Study of Prostate Cancer
    Shinmoto, Hiroshi
    Tamura, Chiharu
    Soga, Shigeyoshi
    Shiomi, Eisuke
    Yoshihara, Nobuyuki
    Kaji, Tatsumi
    Mulkern, Robert V.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2012, 199 (04) : W496 - W500
  • [22] Progress of intravoxel incoherent motion diffusion-weighted imaging in liver diseases
    Tao, Yun-Yun
    Zhou, Yi
    Wang, Ran
    Gong, Xue-Qin
    Zheng, Jing
    Yang, Cui
    Yang, Lin
    Zhang, Xiao-Ming
    WORLD JOURNAL OF CLINICAL CASES, 2020, 8 (15) : 3164 - U53
  • [23] Cramer-Rao lower bounds for curve fitting
    Kanatani, K
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (02): : 93 - 99
  • [24] Approximations of the Cramer-Rao bound for multiple-target motion analysis
    Le Cadre, JP
    Gauvrit, H
    Trarieux, F
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2000, 147 (03) : 105 - 113
  • [25] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24
  • [27] Quantum Cramer-Rao Bound and Parity Measurement
    Chiruvelli, Aravind
    Lee, Hwang
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION III, 2010, 7611
  • [28] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376
  • [29] MODIFIED CRAMER-RAO BOUND AND ITS APPLICATIONS
    MILLER, RW
    CHANG, CB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) : 398 - 400
  • [30] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    XV LATIN AMERICAN REGIONAL IAU MEETING, 2016, 2017, 49 : 52 - 52