Cramer-Rao Bound for Intravoxel Incoherent Motion Diffusion Weighted Imaging Fitting

被引:0
|
作者
Zhang, Qinwei [1 ]
Wang, Yi-Xiang [1 ]
Ma, Heather Ting [2 ]
Yuan, Jing [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Imaging & Intervent Radiol, Shatin, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Harbin, Peoples R China
关键词
HUMAN BRAIN;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The precision of parameter estimation for Intravoxel Incoherent Motion Diffusion Weighted Imaging (IVIM-DWI) was investigated by examining their Cramer-Rao bounds (CRBs) under the presence of Rician noise. Monte Carlo (MC) simulation was also conducted to validate the CRB results. The estimation uncertainties of true diffusion coefficient (D) and perfusion fraction (f(0)) could reach 3.89% and 11.65% respectively with typical parameter values at a moderate signal-to-noise ratio (SNR) of 40. However, to estimate pseudo diffusion coefficient (D*) within 10% uncertainty requires SNR>122. The results also showed that the estimation precision of each parameter is not only dependent on SNR but also their true values, while this mutual dependency is complicated. Under some particular cases, estimation uncertainty for certain parameters might be smaller than 5% at a moderate SNR of 40. However, the simultaneous precise estimation for all three parameters is theoretically difficult and highly SNR demanding.
引用
收藏
页码:511 / 514
页数:4
相关论文
共 50 条
  • [1] Compressive TDOA Estimation: Cramer-Rao Bound and Incoherent Processing
    Cao, Hui
    Chan, Y. T.
    So, Hing Cheung
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 3326 - 3331
  • [2] APPLICATION OF THE CRAMER-RAO BOUND TO TARGET MOTION ANALYSIS
    MOON, JR
    ELECTRONICS LETTERS, 1979, 15 (08) : 236 - 237
  • [3] GEOMETRY OF THE CRAMER-RAO BOUND
    SCHARF, LL
    MCWHORTER, LT
    SIGNAL PROCESSING, 1993, 31 (03) : 301 - 311
  • [4] Learning to Bound: A Generative Cramer-Rao Bound
    Habi, Hai Victor
    Messer, Hagit
    Bresler, Yoram
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 1216 - 1231
  • [5] Cramer-Rao bound for gated PET
    Cloquet, Christophe
    Goldman, Serge
    Defrise, Michel
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2267 - 2272
  • [6] CONCENTRATED CRAMER-RAO BOUND EXPRESSIONS
    HOCHWALD, B
    NEHORAI, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) : 363 - 371
  • [7] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [8] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [9] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    JOSHI, VM
    ANNALS OF STATISTICS, 1976, 4 (05): : 998 - 1002
  • [10] LIKELIHOOD SENSITIVITY AND THE CRAMER-RAO BOUND
    GARDNER, WA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) : 491 - 491