Shannon information entropies for position-dependent mass Schrodinger problem with a hyperbolic well

被引:68
|
作者
Sun Guo-Hua [1 ]
Popov, Dusan [2 ]
Camacho-Nieto, Oscar [3 ]
Dong Shi-Hai [3 ]
机构
[1] UPALM, Inst Politecn Nacl, Ctr Invest Computac, Catedra CONACyT, Mexico City 07738, DF, Mexico
[2] Politehn Univ Timisoara, Dept Phys Fdn Engn, Timisoara 300223, Romania
[3] UPALM, Inst Politecn Nacl, CIDETEC, Mexico City 07700, DF, Mexico
关键词
position-dependent mass; Shannon information entropy; hyperbolic potential; Fourier transform; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; HARMONIC-OSCILLATOR; STRONG ASYMPTOTICS; EQUATION; POTENTIALS;
D O I
10.1088/1674-1056/24/10/100303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position S-x and momentum S-p information entropies for six low-lying states are calculated. We notice that the S-x decreases with the increasing mass barrier width a and becomes negative beyond a particular width a, while the S-p first increases with a and then decreases with it. The negative S-x exists for the probability densities that are highly localized. We find that the probability density rho(x) for n = 1,3,5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities rho(s) (x) and rho(s) (p) are demonstrated. The Bialynicki-Birula-Mycielski (BBM) inequality is also tested for these states and found to hold.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Semiclassical method to Schrodinger equation with position-dependent effective mass
    Chen Gang
    Xuan Pei-Cai
    Chen Zi-Dong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (01) : 39 - 42
  • [22] Exact analytic solution of position-dependent mass Schrodinger equation
    Rajbongshi, H.
    INDIAN JOURNAL OF PHYSICS, 2018, 92 (03) : 357 - 367
  • [23] Information-theoretic measures for a position-dependent mass system in an infinite potential well
    da Costa, Bruno G.
    Gomez, Ignacio S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [24] SOLVABLE POTENTIALS WITH POSITION-DEPENDENT EFFECTIVE MASS AND CONSTANT MASS SCHRODINGER EQUATION
    Panahi, H.
    Bakhshi, Z.
    ACTA PHYSICA POLONICA B, 2010, 41 (01): : 11 - 21
  • [25] Effective Hamiltonian with position-dependent mass and ordering problem
    V. M. Tkachuk
    O. Voznyak
    The European Physical Journal Plus, 130
  • [26] Effective Hamiltonian with position-dependent mass and ordering problem
    Tkachuk, V. M.
    Voznyak, O.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (08):
  • [27] Position-dependent mass Schrodinger equation for exponential-type potentials
    Ovando, G.
    Pena, J. J.
    Morales, J.
    Lopez-Bonilla, J.
    JOURNAL OF MOLECULAR MODELING, 2019, 25 (09)
  • [28] Quantum Operator Approach Applied to the Position-Dependent Mass Schrodinger Equation
    Ovando, G.
    Pena, J. J.
    Morales, J.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [29] Algebraic approach to the position-dependent mass Schrodinger equation for a singular oscillator
    Dong, Shi-Hai
    Pena, J. J.
    Pacheco-Garcia, C.
    Garcia-Ravelo, J.
    MODERN PHYSICS LETTERS A, 2007, 22 (14) : 1039 - 1045
  • [30] Spectrum generating algebras for position-dependent mass oscillator Schrodinger equations
    Quesne, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (43) : 13107 - 13119