Spectrum generating algebras for position-dependent mass oscillator Schrodinger equations

被引:22
|
作者
Quesne, C. [1 ]
机构
[1] Univ Libre Bruxelles, B-1050 Brussels, Belgium
关键词
D O I
10.1088/1751-8113/40/43/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interest of quadratic algebras for position-dependent mass Schrodinger equations is highlighted by constructing spectrum generating algebras for a class of d-dimensional radial harmonic oscillators with d >= 2 and a specific mass choice depending on some positive parameter a. Via some minor changes, the one-dimensional oscillator on the line with the same kind of mass is included in this class. The existence of a single unitary irreducible representation belonging to the positive-discrete series type for d >= 2 and of two of them for d = 1 is proved. The transition to the constant-mass limit alpha -> 0 is studied and deformed su(1,1) generators are constructed. These operators are finally used to generate all the bound-state wavefunctions by an algebraic procedure.
引用
收藏
页码:13107 / 13119
页数:13
相关论文
共 50 条
  • [1] Quadratic algebras and position-dependent mass Schrodinger equations
    Quesne, Christiane
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [2] Dynamical Equations, Invariants and Spectrum Generating Algebras of Mechanical Systems with Position-Dependent Mass
    Cruz Y Cruz, Sara
    Rosas-Ortiz, Oscar
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [3] Position-Dependent Mass Schrodinger Equations Allowing Harmonic Oscillator (HO) Eigenvalues
    Pena, J. J.
    Ovando, G.
    Morales, J.
    Garcia-Ravelo, J.
    Pacheco-Garcia, C.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2008, 108 (15) : 2906 - 2913
  • [4] Generalized Harmonic Oscillator and the Schrodinger Equation with Position-Dependent Mass
    Ju Guo-Xing
    Cai Chang-Ying
    Ren Zhong-Zhou
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) : 797 - 802
  • [5] Potential algebra approach to position-dependent mass Schrodinger equations
    Jana, T. K.
    Roy, P.
    EPL, 2009, 87 (03)
  • [6] Algebraic approach to the position-dependent mass Schrodinger equation for a singular oscillator
    Dong, Shi-Hai
    Pena, J. J.
    Pacheco-Garcia, C.
    Garcia-Ravelo, J.
    MODERN PHYSICS LETTERS A, 2007, 22 (14) : 1039 - 1045
  • [7] The Schrodinger equation with position-dependent mass
    Killingbeck, J. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (28)
  • [8] Exact Solutions of Schrodinger Equation for the Position-Dependent Effective Mass Harmonic Oscillator
    Amir, Naila
    Iqbal, Shahid
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (06) : 790 - 794
  • [9] Exactly solvable schrodinger equations with a position-dependent mass:: Null potential
    Pena, J. J.
    Ovando, G.
    Morales, J.
    Garcia-Ravelo, J.
    Pacheco-Garcia, C.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (15) : 3039 - 3045
  • [10] On the solutions of the position-dependent effective mass Schrodinger equation of a nonlinear oscillator related with the isotonic oscillator
    Kraenkel, R. A.
    Senthilvelan, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (41)