Shannon information entropies for position-dependent mass Schrodinger problem with a hyperbolic well

被引:68
|
作者
Sun Guo-Hua [1 ]
Popov, Dusan [2 ]
Camacho-Nieto, Oscar [3 ]
Dong Shi-Hai [3 ]
机构
[1] UPALM, Inst Politecn Nacl, Ctr Invest Computac, Catedra CONACyT, Mexico City 07738, DF, Mexico
[2] Politehn Univ Timisoara, Dept Phys Fdn Engn, Timisoara 300223, Romania
[3] UPALM, Inst Politecn Nacl, CIDETEC, Mexico City 07700, DF, Mexico
关键词
position-dependent mass; Shannon information entropy; hyperbolic potential; Fourier transform; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; HARMONIC-OSCILLATOR; STRONG ASYMPTOTICS; EQUATION; POTENTIALS;
D O I
10.1088/1674-1056/24/10/100303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position S-x and momentum S-p information entropies for six low-lying states are calculated. We notice that the S-x decreases with the increasing mass barrier width a and becomes negative beyond a particular width a, while the S-p first increases with a and then decreases with it. The negative S-x exists for the probability densities that are highly localized. We find that the probability density rho(x) for n = 1,3,5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities rho(s) (x) and rho(s) (p) are demonstrated. The Bialynicki-Birula-Mycielski (BBM) inequality is also tested for these states and found to hold.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Mapping of the position-dependent mass Schrodinger equation under point canonical transformation
    Chen, G
    CHINESE PHYSICS, 2005, 14 (03): : 460 - 462
  • [42] Coordinate transformation and exact solutions of Schrodinger equation with position-dependent effective mass
    Ju Guo-Xing
    Cai Chang-Ying
    Xiang Yang
    Ren Zhong-Zhou
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (06) : 1001 - 1009
  • [43] The Kepler problem in Dirac theory for a particle with position-dependent mass
    Vakarchuk, IO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (21): : 4727 - 4734
  • [44] Explicit solutions for N-dimensional Schrodinger equations with position-dependent mass
    Gonul, B.
    Kocak, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [45] Position-dependent effective mass Schrodinger equations for PT-symmetric potentials
    Jia, Chun-Sheng
    Yi, Liang-Zhong
    Sun, Yu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (02) : 435 - 446
  • [46] The position-dependent effective mass Schrodinger equation: a quasi-exact solution
    Moayedi, SK
    Jalbout, AF
    Solimannejad, M
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2003, 663 (1-3): : 15 - 18
  • [47] Dirac equation with position-dependent effective mass and solvable potentials in the Schrodinger equation
    Panahi, H.
    Bakhshi, Z.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (17)
  • [48] Nonperturbative solutions for one-dimensional Schrodinger equation with position-dependent mass
    Solimannejad, M
    Moayedi, SK
    Tavakoli, M
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (05) : 1027 - 1031
  • [49] Position-Dependent Mass Schrodinger Equations Allowing Harmonic Oscillator (HO) Eigenvalues
    Pena, J. J.
    Ovando, G.
    Morales, J.
    Garcia-Ravelo, J.
    Pacheco-Garcia, C.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2008, 108 (15) : 2906 - 2913
  • [50] Fisher information and quantum systems with position-dependent effective mass
    Puente, A
    Plastino, A
    Casas, M
    Garcias, F
    Plastino, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 277 (1-2) : 146 - 156