Parameters estimation for a new anomalous thermal diffusion model in layered media

被引:6
|
作者
Chen, S. [1 ]
Jiang, X. Y. [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomalous heat conduction; Multilayered material; The balance method; Parameters identification; Nonlinear conjugate gradient method; HEAT-CONDUCTION; NUMERICAL APPROXIMATION; INVERSE PROBLEM; EQUATION;
D O I
10.1016/j.camwa.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an inverse problem of parameters estimation for a new time fractional heat conduction model in multilayered medium. In the anomalous thermal diffusion model, we consider the fractional derivative boundary conditions and the conduction obeys modified Fourier law with Riemann-Liouville fractional operator of different order in each layer. For the direct problem, we construct an effective finite difference scheme by using the balance method to deal with the discontinuity interface. For the inverse problem, we apply the nonlinear conjugate gradient (NCG) method with different conjugated coefficients to simultaneously identify the fractional exponent in each layer. Finally, we use experimental data to verify the effectiveness of the proposed technique, in which the Jacobian matrix is achieved by a derivative-free approach. We analyze the sensitivity coefficients and the convergence behaviors of the NCG algorithm. The simulation results confirm that the fractional heat conduction model with estimated parameters gives a more accurate fitting than the classical counterpart and the NCG method is a feasible and effective technique for the inverse problem of parameters estimation in fractional model. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1172 / 1181
页数:10
相关论文
共 50 条
  • [1] Parameters estimation for a new anomalous thermal diffusion model in layered media
    Chen, S.
    Jiang, X.Y.
    Computers and Mathematics with Applications, 2017, 73 (06): : 1172 - 1181
  • [2] ESTIMATION OF PARAMETERS IN LOSSLESS LAYERED MEDIA SYSTEMS
    HABIBIASHRAFI, F
    MENDEL, JM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (01) : 31 - 49
  • [3] ESTIMATION OF PARAMETERS IN A DIFFUSION NEURON MODEL
    NILSSON, HG
    COMPUTERS AND BIOMEDICAL RESEARCH, 1977, 10 (02): : 191 - 197
  • [4] A NEW MODEL OF THE REINFORCED, LAYERED MEDIA
    SZEFER, G
    SALAMON, JW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (04): : T204 - T206
  • [5] Numerical algorithm for the model describing anomalous diffusion in expanding media
    Nie, Daxin
    Sun, Jing
    Deng, Weihua
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (06): : 2265 - 2294
  • [6] Gaussian Processes in Complex Media: New Vistas on Anomalous Diffusion
    Di Tullio, Francesco
    Paradisi, Paolo
    Spigler, Renato
    Pagnini, Gianni
    FRONTIERS IN PHYSICS, 2019, 7 (SEP)
  • [7] Anomalous diffusion in porous media
    Ferreira, J. A.
    Pena, G.
    Romanazzi, G.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (03) : 1850 - 1862
  • [8] Numerical study and parameters estimation of anomalous diffusion process in porous media based on variable-order time fractional dual-phase-lag model
    Sobhani, Hossein
    Azimi, Aziz
    Noghrehabadi, Aminreza
    Mozafarifard, Milad
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023, 83 (07) : 679 - 710
  • [9] OPTICAL DIFFUSION IN LAYERED MEDIA
    KEIJZER, M
    STAR, WM
    STORCHI, PRM
    APPLIED OPTICS, 1988, 27 (09): : 1820 - 1824
  • [10] Optimal parameters for anomalous-diffusion-exponent estimation from noisy data
    Lanoiselee, Yann
    Sikora, Grzegorz
    Grzesiek, Aleksandra
    Grebenkov, Denis S.
    Wylomanska, Agnieszka
    PHYSICAL REVIEW E, 2018, 98 (06)