NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS

被引:2
|
作者
Wang, Zhanfeng [1 ]
Ding, Hao [1 ]
Chen, Zimu [1 ]
Shi, Jian Qing [2 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei, Anhui, Peoples R China
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Functional linear model; function-on-function regression model; Gaussian process priors; nonlinear random effects; ON-FUNCTION REGRESSION; LINEAR-REGRESSION;
D O I
10.5705/ss.202018.0296
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For functional regression models with functional responses, we propose a nonparametric random-effects model using Gaussian process priors. The proposed model captures the heterogeneity nonlinearly and the covariance structure nonparametrically, enabling longitudinal studies of functional data. The model also has a flexible form of mean structure. We develop a procedure to estimate the unknown parameters and calculate the random effects nonparametrically. The procedure uses a penalized least squares regression and a maximum a posterior estimate, yielding a more accurate prediction. The statistical theory is discussed, including information consistency. Simulation studies and two real-data examples show that the proposed method performs well.
引用
收藏
页码:53 / 78
页数:26
相关论文
共 50 条
  • [41] Nonparametric Local Pseudopotentials with Machine Learning: A Tin Pseudopotential Built Using Gaussian Process Regression
    Luder, Johann
    Manzhos, Sergei
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (52): : 11111 - 11124
  • [42] Model selection and signal extraction using Gaussian Process regression
    Gandrakota, Abhijith
    Lath, Amit
    Morozov, Alexandre V.
    Murthy, Sindhu
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (02)
  • [43] Development of an Engine Calibration Model Using Gaussian Process Regression
    Tianhong Pan
    Yang Cai
    Shan Chen
    International Journal of Automotive Technology, 2021, 22 : 327 - 334
  • [44] Development of an Engine Calibration Model Using Gaussian Process Regression
    Pan, Tianhong
    Cai, Yang
    Chen, Shan
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2021, 22 (02) : 327 - 334
  • [45] Model selection and signal extraction using Gaussian Process regression
    Abhijith Gandrakota
    Amit Lath
    Alexandre V. Morozov
    Sindhu Murthy
    Journal of High Energy Physics, 2023
  • [46] Monitoring Nonlinear Profiles with Random Effects by Nonparametric Regression
    Shiau, Jyh-Jen Horng
    Huang, Hsiang-Ling
    Lin, Shuo-Hui
    Tsai, Ming-Ye
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (10) : 1664 - 1679
  • [47] Nonparametric identification of batch process using two-dimensional kernel-based Gaussian process regression
    Chen, Minghao
    Xu, Zuhua
    Zhao, Jun
    Zhu, Yucai
    Shao, Zhijiang
    CHEMICAL ENGINEERING SCIENCE, 2022, 250
  • [48] Model selection for Gaussian regression with random design
    Birgé, L
    BERNOULLI, 2004, 10 (06) : 1039 - 1051
  • [49] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [50] Nonparametric identification based on Gaussian process regression for distributed parameter systems
    Wang, Lijie
    Xu, Zuhua
    Zhao, Jun
    Shao, Zhijiang
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (06) : 1229 - 1242