NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS

被引:2
|
作者
Wang, Zhanfeng [1 ]
Ding, Hao [1 ]
Chen, Zimu [1 ]
Shi, Jian Qing [2 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei, Anhui, Peoples R China
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Functional linear model; function-on-function regression model; Gaussian process priors; nonlinear random effects; ON-FUNCTION REGRESSION; LINEAR-REGRESSION;
D O I
10.5705/ss.202018.0296
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For functional regression models with functional responses, we propose a nonparametric random-effects model using Gaussian process priors. The proposed model captures the heterogeneity nonlinearly and the covariance structure nonparametrically, enabling longitudinal studies of functional data. The model also has a flexible form of mean structure. We develop a procedure to estimate the unknown parameters and calculate the random effects nonparametrically. The procedure uses a penalized least squares regression and a maximum a posterior estimate, yielding a more accurate prediction. The statistical theory is discussed, including information consistency. Simulation studies and two real-data examples show that the proposed method performs well.
引用
收藏
页码:53 / 78
页数:26
相关论文
共 50 条
  • [31] Bayesian Testing of Linear Versus Nonlinear Effects Using Gaussian Process Priors
    Mulder, Joris
    AMERICAN STATISTICIAN, 2023, 77 (01): : 1 - 11
  • [32] DEGRADATION ANALYSIS USING THE INVERSE GAUSSIAN PROCESS MODEL WITH RANDOM EFFECTS: A BAYESIAN PERSPECTIVE
    Peng, Weiwen
    Huang, Hong-Zhong
    Wang, Zhonglai
    Yang, Yuanjian
    Liu, Yu
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 8, 2014,
  • [33] Sparse nonparametric model for regression with functional covariate
    Aneiros, G.
    Vieu, P.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) : 839 - 859
  • [34] Adaptive estimation in the functional nonparametric regression model
    Chagny, Gaelle
    Roche, Angelina
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 105 - 118
  • [35] Nonparametric relative regression under random censorship model
    Salah, Khardani
    Yousri, Slaoui
    STATISTICS & PROBABILITY LETTERS, 2019, 151 : 116 - 122
  • [36] On bootstrapping the mode in the nonparametric regression model with random design
    Klaus Ziegler
    Metrika, 2001, 53 : 141 - 170
  • [37] On bootstrapping the mode in the nonparametric regression model with random design
    Ziegler, K
    METRIKA, 2001, 53 (02) : 141 - 170
  • [38] Divide & conquer identification using Gaussian process priors
    Leith, DJ
    Leithead, WE
    Solak, E
    Murray-Smith, R
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 624 - 629
  • [39] Nonparametric Regression via Variance-Adjusted Gradient Boosting Gaussian Process Regression
    Lu, Hsin-Min
    Chen, Jih-Shin
    Liao, Wei-Chun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2669 - 2679
  • [40] Cautious Model Predictive Control Using Gaussian Process Regression
    Hewing, Lukas
    Kabzan, Juraj
    Zeilinger, Melanie N.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (06) : 2736 - 2743