NONPARAMETRIC RANDOM EFFECTS FUNCTIONAL REGRESSION MODEL USING GAUSSIAN PROCESS PRIORS

被引:2
|
作者
Wang, Zhanfeng [1 ]
Ding, Hao [1 ]
Chen, Zimu [1 ]
Shi, Jian Qing [2 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Sch Management, Hefei, Anhui, Peoples R China
[2] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne, Tyne & Wear, England
关键词
Functional linear model; function-on-function regression model; Gaussian process priors; nonlinear random effects; ON-FUNCTION REGRESSION; LINEAR-REGRESSION;
D O I
10.5705/ss.202018.0296
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For functional regression models with functional responses, we propose a nonparametric random-effects model using Gaussian process priors. The proposed model captures the heterogeneity nonlinearly and the covariance structure nonparametrically, enabling longitudinal studies of functional data. The model also has a flexible form of mean structure. We develop a procedure to estimate the unknown parameters and calculate the random effects nonparametrically. The procedure uses a penalized least squares regression and a maximum a posterior estimate, yielding a more accurate prediction. The statistical theory is discussed, including information consistency. Simulation studies and two real-data examples show that the proposed method performs well.
引用
收藏
页码:53 / 78
页数:26
相关论文
共 50 条
  • [21] Gaussian process regression using partition resampling model
    Winarni, Sri
    Indratno, Sapto Wahyu
    Sari, Kurnia Novita
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (02): : 853 - 864
  • [22] Nonparametric regression with sample design following a random process
    Chicken, Eric
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) : 1915 - 1934
  • [23] Estimation of trend and random components of conditional random field using Gaussian process regression
    Yoshida, Ikumasa
    Tomizawa, Yukihisa
    Otake, Yu
    COMPUTERS AND GEOTECHNICS, 2021, 136
  • [24] Image Deblocking Using Joint Gaussian Mixture Model and Anchored Neighborhood Regression Priors
    Fan, Meng
    He, Xiaohai
    Xiong, Shuhua
    Qing, Linbo
    NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
  • [25] Nonparametric Identification of Linear Time-Varying Systems using Gaussian Process Regression
    Hallemans, N.
    Lataire, J.
    Pintelon, R.
    IFAC PAPERSONLINE, 2020, 53 (02): : 1001 - 1006
  • [26] Learning Stable Nonparametric Dynamical Systems with Gaussian Process Regression
    Xiao, Wenxin
    Lederer, Armin
    Hirche, Sandra
    IFAC PAPERSONLINE, 2020, 53 (02): : 1194 - 1199
  • [27] Posterior consistency of Gaussian process prior for nonparametric binary regression
    Ghosal, Subhashis
    Roy, Anindya
    ANNALS OF STATISTICS, 2006, 34 (05): : 2413 - 2429
  • [28] How priors of initial hyperparameters affect Gaussian process regression models
    Chen, Zexun
    Wang, Bo
    NEUROCOMPUTING, 2018, 275 : 1702 - 1710
  • [29] A Prediction Model for Functional Outcomes in Spinal Cord Disorder Patients Using Gaussian Process Regression
    Lee, Sunghoon Ivan
    Mortazavi, Bobak
    Hoffman, Haydn A.
    Lu, Derek S.
    Li, Charles
    Paak, Brian H.
    Garst, Jordan H.
    Razaghy, Mehrdad
    Espinal, Marie
    Park, Eunjeong
    Lu, Daniel C.
    Sarrafzadeh, Majid
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (01) : 91 - 99
  • [30] Image Segmentation Using a Spatially Correlated Mixture Model with Gaussian Process Priors
    Kurisu, Kosei
    Suematsu, Nobuo
    Iwata, Kazunori
    Hayashi, Akira
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 59 - 63