A data-driven method for estimating the remaining useful life of a Composite Drill Pipe

被引:0
|
作者
Lahmadi, Ahmed [1 ]
Terrissa, Labib [2 ]
Zerhouni, Noureddine [3 ]
机构
[1] LINATI Lab, Ouargla, Algeria
[2] LINFI Lab, Biskra, Algeria
[3] Femto ST, Besancon, France
来源
2018 INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND ELECTRICAL TECHNOLOGIES (IC_ASET) | 2017年
关键词
Data-driven approach; composites; drill pipe; neural networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Composite drill pipe has known a big interest in the shortradius drilling industry due to its lightweight, flexibility and the performance properties of steel pipe Despite its benefits, composites suffer from fatigue when subjected to loads, which leads to failure. To prevent this the use of a predictive maintenance monitoring the state and predicting its remaining useful life is needed. In this work, we proposed a predictive maintenance method for estimating the remaining useful life of composite drill pipe subjected to cyclic loads. A tension-tension fatigue experiment in a cross-ply Carbon fiber reinforced polymer (CFRP) laminate is used for case study
引用
收藏
页码:192 / 195
页数:4
相关论文
共 50 条
  • [41] A Multi-source Data-driven Approach to IGBT Remaining Useful Life Prediction
    Hao, Xiaoyu
    Wang, Qiang
    Yang, Yahong
    Ma, Hongbo
    Wang, Xianzhi
    Chen, Gaige
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 733 - 737
  • [42] Data-driven health state estimation and remaining useful life prediction of fuel cells
    Song, Ke
    Huang, Xing
    Huang, Pengyu
    Sun, Hui
    Chen, Yuhui
    Huang, Dongya
    RENEWABLE ENERGY, 2024, 227
  • [43] A Data-Driven Approach Based Health Indicator for Remaining Useful Life Estimation of Bearings
    Akuruyejo, Mufutau
    Kowontan, Samuel
    Ben Ali, Jaouher
    2017 18TH INTERNATIONAL CONFERENCE ON SCIENCES AND TECHNIQUES OF AUTOMATIC CONTROL AND COMPUTER ENGINEERING (STA), 2017, : 284 - 289
  • [44] Dynamic Battery Remaining Useful Life Estimation: An On-line Data-driven Approach
    Zhou, Jianbao
    Liu, Datong
    Peng, Yu
    Peng, Xiyuan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 2196 - 2199
  • [45] A parameter adaptive data-driven approach for remaining useful life prediction of solenoid valves
    Tang, Xuanheng
    Peng, Jun
    Chen, Bin
    Jiang, Fu
    Yang, Yingze
    Zhang, Rui
    Gao, Dianzhu
    Zhang, Xiaoyong
    Huang, Zhiwu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [46] A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction
    Peng, Jun
    Zheng, Zhiyong
    Zhang, Xiaoyong
    Deng, Kunyuan
    Gao, Kai
    Li, Heng
    Chen, Bin
    Yang, Yingze
    Huang, Zhiwu
    ENERGIES, 2020, 13 (03)
  • [47] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6
  • [48] A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities
    Li, Huiqin
    Zhang, Zhengxin
    Li, Tianmei
    Si, Xiaosheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [49] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [50] A Bayesian Data-Driven Framework for Aleatoric and Epistemic Uncertainty Quantification in Remaining Useful Life Predictions
    Jiang, Mudi
    Xing, Tianyang
    Zio, Enrico
    Zhu, Xiaoliang
    IEEE SENSORS JOURNAL, 2024, 24 (24) : 42255 - 42267