A data-driven method for estimating the remaining useful life of a Composite Drill Pipe

被引:0
|
作者
Lahmadi, Ahmed [1 ]
Terrissa, Labib [2 ]
Zerhouni, Noureddine [3 ]
机构
[1] LINATI Lab, Ouargla, Algeria
[2] LINFI Lab, Biskra, Algeria
[3] Femto ST, Besancon, France
来源
2018 INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND ELECTRICAL TECHNOLOGIES (IC_ASET) | 2017年
关键词
Data-driven approach; composites; drill pipe; neural networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Composite drill pipe has known a big interest in the shortradius drilling industry due to its lightweight, flexibility and the performance properties of steel pipe Despite its benefits, composites suffer from fatigue when subjected to loads, which leads to failure. To prevent this the use of a predictive maintenance monitoring the state and predicting its remaining useful life is needed. In this work, we proposed a predictive maintenance method for estimating the remaining useful life of composite drill pipe subjected to cyclic loads. A tension-tension fatigue experiment in a cross-ply Carbon fiber reinforced polymer (CFRP) laminate is used for case study
引用
收藏
页码:192 / 195
页数:4
相关论文
共 50 条
  • [21] Data-driven prognostics of remaining useful life for milling machine cutting tools
    Liu, Yen-Chun
    Chang, Yuan-Jen
    Liu, Sheng-Liang
    Chen, Szu-Ping
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [22] Remaining useful life estimation in aeronautics: Combining data-driven and Kalman filtering
    Baptista, Marcia
    Henriques, Elsa M. P.
    de Medeiros, Ivo P.
    Malere, Joao P.
    Nascimento, Cairo L., Jr.
    Prendinger, Helmut
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 184 : 228 - 239
  • [23] Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    Hu, Chao
    Youn, Byeng D.
    Wang, Pingfeng
    Yoon, Joung Taek
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 103 : 120 - 135
  • [24] Empirical Analysis for Remaining Useful Life Estimation via Data-Driven Models
    Almeida, Jose Carlos
    Ribeiro, Bernardete
    Cardoso, Alberto
    IFAC PAPERSONLINE, 2022, 55 (06): : 222 - 227
  • [25] An SHM Data-Driven Methodology for the Remaining Useful Life Prognosis of Aeronautical Subcomponents
    Galanopoulos, Georgios
    Eleftheroglou, Nick
    Milanoski, Dimitrios
    Broer, Agnes
    Zarouchas, Dimitrios
    Loutas, Theodoros
    EUROPEAN WORKSHOP ON STRUCTURAL HEALTH MONITORING (EWSHM 2022), VOL 1, 2023, 253 : 244 - 253
  • [26] Feature Extraction for Data-Driven Remaining Useful Life Prediction of Rolling Bearings
    Zhao, Huimin
    Liu, Haodong
    Jin, Yang
    Dang, Xiangjun
    Deng, Wu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [27] Remaining Useful Life Estimation of Bearings Using Data-Driven Ridge Regression
    Park, Pangun
    Jung, Mingyu
    Di Marco, Piergiuseppe
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [28] A Data-Driven Method for Remaining Useful Life Prediction of Rolling Bearings Under Different Working Conditions
    Zhong, Xiaoyong
    Song, Xiangjin
    Liu, Guohai
    Zhao, Wenxiang
    Fan, Wei
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (02) : 1368 - 1379
  • [29] Research on hybrid data-driven method for predicting the remaining useful life of lithium-ion batteries
    Li, Yuanjiang
    Li, Liping
    Li, Lei
    Huang, Xinyu
    Sun, Guodong
    Wang, Yina
    Zhang, Jinglin
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 309
  • [30] A Data-Driven Remaining Useful Life Prediction Method for Power MOSFETs Considering Nonlinear Dynamical Behaviors
    Yi, Jianmin
    Ma, Cunbao
    Wang, Hao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2025, 72 (04) : 1885 - 1892