A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction

被引:17
|
作者
Peng, Jun [1 ]
Zheng, Zhiyong [2 ]
Zhang, Xiaoyong [1 ]
Deng, Kunyuan [2 ]
Gao, Kai [3 ]
Li, Heng [2 ]
Chen, Bin [2 ]
Yang, Yingze [1 ]
Huang, Zhiwu [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; remaining useful life; gradient boosting decision trees; the box-cox transformation; time window; particle swarm optimization; OF-HEALTH ESTIMATION; CYCLE LIFE; STATE; MODEL; PROGNOSTICS;
D O I
10.3390/en13030752
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Data-driven methods are widely applied to predict the remaining useful life (RUL) of lithium-ion batteries, but they generally suffer from two limitations: (i) the potentials of features are not fully exploited, and (ii) the parameters of the prediction model are difficult to determine. To address this challenge, this paper proposes a new data-driven method using feature enhancement and adaptive optimization. First, the features of battery aging are extracted online. Then, the feature enhancement technologies, including the box-cox transformation and the time window processing, are used to fully exploit the potential of features. The box-cox transformation can improve the correlation between the features and the aging status of the battery, and the time window processing can effectively exploit the time information hidden in the historical features sequence. Based on this, gradient boosting decision trees are used to establish the RUL prediction model, and the particle swarm optimization is used to adaptively optimize the model parameters. This method was applied on actual lithium-ion battery degradation data, and the experimental results show that the proposed model is superior to traditional prediction methods in terms of accuracy.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Remaining useful life prediction for lithium-ion battery using a data-driven method
    Jin Z.
    Fang C.
    Wu J.
    Li J.
    Zeng W.
    Zhao X.
    International Journal of Wireless and Mobile Computing, 2022, 23 (3-4) : 239 - 249
  • [2] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6
  • [3] A data-driven prediction model for the remaining useful life prediction of lithium-ion batteries
    Feng, Juqiang
    Cai, Feng
    Li, Huachen
    Huang, Kaifeng
    Yin, Hao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 180 : 601 - 615
  • [4] Data-driven Prognostics and Remaining Useful Life Estimation for Lithium-ion Battery: A Review
    LIU Datong
    ZHOU Jianbao
    PENG Yu
    Instrumentation, 2014, 01 (01) : 59 - 70
  • [5] A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
    Ren, Lei
    Dong, Jiabao
    Wang, Xiaokang
    Meng, Zihao
    Zhao, Li
    Deen, M. Jamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3478 - 3487
  • [6] A data-driven approach with error compensation and uncertainty quantification for remaining useful life prediction of lithium-ion battery
    Wei, Meng
    Ye, Min
    Wang, Qiao
    Lian, Gaoqi
    Xu, Xinxin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (14) : 20121 - 20135
  • [7] A Data-Driven Method With Mode Decomposition Mechanism for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Wang, Jianguo
    Zhang, Shude
    Li, Chenyu
    Wu, Lifeng
    Wang, Yingzhou
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (11) : 13684 - 13695
  • [8] A Data-Driven Method for Lithium-Ion Batteries Remaining Useful Life Prediction Based on Optimal Hyperparameters
    Zhu, Yuhao
    Shang, Yunlong
    Duan, Bin
    Gu, Xin
    Li, Shipeng
    Chen, Guicheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7388 - 7392
  • [9] Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
    Song, Yuchen
    Liu, Datong
    Yang, Chen
    Peng, Yu
    MICROELECTRONICS RELIABILITY, 2017, 75 : 142 - 153
  • [10] Feature selection and data-driven model for predicting the remaining useful life of lithium-ion batteries
    Zhang, Yuhao
    Han, Yunfei
    Cai, Tao
    Xie, Jia
    Cheng, Shijie
    IET ENERGY SYSTEMS INTEGRATION, 2024,