The Gibbs principle for Markov jump processes

被引:2
|
作者
Aboulalaa, A
机构
[1] Laboratoire de Probabilités, Universite Pierre et Marie Curie, 75252 Paris, Tour 56, 3eme etage, 4, Pl. Jussieu
关键词
Kullback-Leibler Information; generalized I-projection; large deviations; maximum entropy principle; Markov jump processes;
D O I
10.1016/S0304-4149(96)00092-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to derive a stochastic process version of the ''Gibbs principle''. Namely, we calculate the law of a jump process (X(t), t is an element of [0, T]) given the condition that the empirical energy function of N copies of the process, remains in some domain for all t is an element of [0, T], when N is large. The main tools are Csiszar's theory on conditional limit theorems and a law of large numbers in non-separable Banach spaces.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条