Kullback-Leibler Information;
generalized I-projection;
large deviations;
maximum entropy principle;
Markov jump processes;
D O I:
10.1016/S0304-4149(96)00092-0
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper is devoted to derive a stochastic process version of the ''Gibbs principle''. Namely, we calculate the law of a jump process (X(t), t is an element of [0, T]) given the condition that the empirical energy function of N copies of the process, remains in some domain for all t is an element of [0, T], when N is large. The main tools are Csiszar's theory on conditional limit theorems and a law of large numbers in non-separable Banach spaces.
机构:
Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
Ma, Yi-An
Fox, Emily B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
Univ Washington, Dept Stat, Seattle, WA 98195 USAUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
Fox, Emily B.
Chen, Tianqi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USAUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
Chen, Tianqi
Wu, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing, Peoples R ChinaUniv Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA