The Gibbs principle for Markov jump processes

被引:2
|
作者
Aboulalaa, A
机构
[1] Laboratoire de Probabilités, Universite Pierre et Marie Curie, 75252 Paris, Tour 56, 3eme etage, 4, Pl. Jussieu
关键词
Kullback-Leibler Information; generalized I-projection; large deviations; maximum entropy principle; Markov jump processes;
D O I
10.1016/S0304-4149(96)00092-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to derive a stochastic process version of the ''Gibbs principle''. Namely, we calculate the law of a jump process (X(t), t is an element of [0, T]) given the condition that the empirical energy function of N copies of the process, remains in some domain for all t is an element of [0, T], when N is large. The main tools are Csiszar's theory on conditional limit theorems and a law of large numbers in non-separable Banach spaces.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条
  • [21] Efficient Parameter Sampling for Markov Jump Processes
    Zhang, Boqian
    Rao, Vinayak
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (01) : 25 - 42
  • [22] Estimation in a general mixture of Markov jump processes
    Frydman, Halina
    Surya, Budhi Arta
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (04):
  • [23] The disorder problem for pure jump Markov processes
    Salov, GI
    Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Signal and Image Processing, 2005, : 205 - 209
  • [24] TRANSITION PATH THEORY FOR MARKOV JUMP PROCESSES
    Metzner, Philipp
    Schuette, Christof
    Vanden-Eijnden, Eric
    MULTISCALE MODELING & SIMULATION, 2009, 7 (03): : 1192 - 1219
  • [25] Efficient sampling of conditioned Markov jump processes
    Andrew Golightly
    Chris Sherlock
    Statistics and Computing, 2019, 29 : 1149 - 1163
  • [26] Markov Chain Approximation of Pure Jump Processes
    Ante Mimica
    Nikola Sandrić
    René L. Schilling
    Acta Applicandae Mathematicae, 2018, 158 : 167 - 206
  • [27] Regularity of models associated with Markov jump processes
    Jedidi, Wissem
    OPEN MATHEMATICS, 2022, 20 (01): : 911 - 930
  • [28] On the Poisson equation for nonreversible Markov jump processes
    Khodabandehlou, Faezeh
    Maes, Christian
    Netocny, Karel
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (04)
  • [29] Markov Chain Approximations for Symmetric Jump Processes
    Ryad Husseini
    Moritz Kassmann
    Potential Analysis, 2007, 27 : 353 - 380
  • [30] Multicriteria impulsive control of jump Markov processes
    Piunovskiy, AB
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 60 (01) : 125 - 144