The Gibbs principle for Markov jump processes

被引:2
|
作者
Aboulalaa, A
机构
[1] Laboratoire de Probabilités, Universite Pierre et Marie Curie, 75252 Paris, Tour 56, 3eme etage, 4, Pl. Jussieu
关键词
Kullback-Leibler Information; generalized I-projection; large deviations; maximum entropy principle; Markov jump processes;
D O I
10.1016/S0304-4149(96)00092-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to derive a stochastic process version of the ''Gibbs principle''. Namely, we calculate the law of a jump process (X(t), t is an element of [0, T]) given the condition that the empirical energy function of N copies of the process, remains in some domain for all t is an element of [0, T], when N is large. The main tools are Csiszar's theory on conditional limit theorems and a law of large numbers in non-separable Banach spaces.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条
  • [31] Optimal interventions in countable jump Markov processes
    Piunovskiy, AB
    MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (02) : 289 - 308
  • [32] Efficient sampling of conditioned Markov jump processes
    Golightly, Andrew
    Sherlock, Chris
    STATISTICS AND COMPUTING, 2019, 29 (05) : 1149 - 1163
  • [33] A METHOD OF APPROXIMATING MARKOV JUMP-PROCESSES
    CRANK, KN
    PURI, PS
    ADVANCES IN APPLIED PROBABILITY, 1988, 20 (01) : 33 - 58
  • [34] Markov chain approximations for symmetric jump processes
    Husseini, Ryad
    Kassmann, Moritz
    POTENTIAL ANALYSIS, 2007, 27 (04) : 353 - 380
  • [35] MARKOV JUMP PROCESSES IN MODELING COALESCENT WITH RECOMBINATION
    Chen, Xian
    Ma, Zhi-Ming
    Wang, Ying
    ANNALS OF STATISTICS, 2014, 42 (04): : 1361 - 1393
  • [36] Markov Chain Approximation of Pure Jump Processes
    Mimica, Ante
    Sandric, Nikola
    Schilling, Rene L.
    ACTA APPLICANDAE MATHEMATICAE, 2018, 158 (01) : 167 - 206
  • [37] Dynamical equivalence classes for Markov jump processes
    Verley, Gatien
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (02):
  • [38] STOPPED PROCESSES OF TEMPORALLY HOMOGENEOUS MARKOV JUMP-PROCESSES
    HE, SW
    WANG, JG
    CHINESE SCIENCE BULLETIN, 1992, 37 (08): : 623 - 626
  • [39] Kolmogorov's equations for jump Markov processes with unbounded jump rates
    Feinberg, Eugene
    Mandava, Manasa
    Shiryaev, Albert N.
    ANNALS OF OPERATIONS RESEARCH, 2022, 317 (02) : 587 - 604
  • [40] JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes
    Huggins, Jonathan H.
    Narasimhan, Karthik
    Saeedi, Ardavan
    Mansinghka, Vikash K.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 693 - 701