The Gibbs principle for Markov jump processes

被引:2
|
作者
Aboulalaa, A
机构
[1] Laboratoire de Probabilités, Universite Pierre et Marie Curie, 75252 Paris, Tour 56, 3eme etage, 4, Pl. Jussieu
关键词
Kullback-Leibler Information; generalized I-projection; large deviations; maximum entropy principle; Markov jump processes;
D O I
10.1016/S0304-4149(96)00092-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to derive a stochastic process version of the ''Gibbs principle''. Namely, we calculate the law of a jump process (X(t), t is an element of [0, T]) given the condition that the empirical energy function of N copies of the process, remains in some domain for all t is an element of [0, T], when N is large. The main tools are Csiszar's theory on conditional limit theorems and a law of large numbers in non-separable Banach spaces.
引用
收藏
页码:257 / 271
页数:15
相关论文
共 50 条
  • [1] The Gibbs principle for Markov jump processes
    Aboulalaa, A.
    Stochastic Processes and their Applications, 64 (02):
  • [2] Berman - Konsowa Principle for Reversible Markov Jump Processes
    den Hollander, F.
    Jansen, S.
    MARKOV PROCESSES AND RELATED FIELDS, 2016, 22 (03) : 409 - 442
  • [3] Gibbs and autoregressive Markov processes
    Nieto-Barajas, Luis E.
    Walker, Stephen G.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (14) : 1479 - 1485
  • [4] Jaynes principle for quantum Markov processes: Generalized Gibbs - von Neumann states rule
    Novotný, Jaroslav
    Maryška, Jiří
    Jex, Igor
    arXiv, 2023,
  • [5] Jaynes’ principle for quantum Markov processes: generalized Gibbs–von Neumann states rule
    J. Novotný
    J. Maryška
    I. Jex
    The European Physical Journal Plus, 138
  • [6] Markov jump processes with a singularity
    Barndorff-Nielsen, OE
    Benth, FE
    Jensen, JL
    ADVANCES IN APPLIED PROBABILITY, 2000, 32 (03) : 779 - 799
  • [7] EQUIVALENCE BETWEEN GIBBS AND MARKOV PROCESSES
    TESEI, A
    LETTERE AL NUOVO CIMENTO, 1973, 8 (09): : 544 - 546
  • [8] Jaynes' principle for quantum Markov processes: generalized Gibbs-von Neumann states rule
    Novotny, J.
    Maryska, J.
    Jex, I.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (07):
  • [9] PIECEWISE-DETERMINISTIC MARKOV PROCESSES AS LIMITS OF MARKOV JUMP PROCESSES
    Franz, Uwe
    Liebscher, Volkmar
    Zeiser, Stefan
    ADVANCES IN APPLIED PROBABILITY, 2012, 44 (03) : 729 - 748
  • [10] CHARACTERIZATION OF MINIMAL MARKOV JUMP PROCESSES
    JACOBSEN, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 23 (01): : 32 - &