ADAPTIVE DENSITY ESTIMATION FOR CLUSTERING WITH GAUSSIAN MIXTURES

被引:14
|
作者
Maugis-Rabusseau, C. [1 ]
Michel, B. [2 ]
机构
[1] Univ Toulouse, INSA Toulouse, Inst Math Toulouse, F-31077 Toulouse 4, France
[2] Univ Paris 06, Lab Stat Theor & Appl, F-75252 Paris 05, France
关键词
Rate adaptive density estimation; gaussian mixture clustering; hellinger risk; non asymptotic model selection; DIRICHLET MIXTURES; CONVERGENCE; RATES;
D O I
10.1051/ps/2012018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally beta-Holder with moment and tail conditions are considered. We show that this penalized estimator is minimax adaptive to the beta regularity of such densities in the Hellinger sense.
引用
收藏
页码:698 / 724
页数:27
相关论文
共 50 条
  • [41] Sparsely Annotated Semantic Segmentation with Adaptive Gaussian Mixtures
    Wu, Linshan
    Zhong, Zhun
    Fang, Leyuan
    He, Xingxin
    Liu, Qiang
    Ma, Jiayi
    Chen, Hao
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15454 - 15464
  • [42] Deconvolution of seismic data using adaptive Gaussian mixtures
    Santamaría, I
    Pantaleón, CJ
    Ibáñez, J
    Artés, A
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (02): : 855 - 859
  • [43] Clustering via nonparametric density estimation
    Azzalini, Adelchi
    Torelli, Nicola
    STATISTICS AND COMPUTING, 2007, 17 (01) : 71 - 80
  • [44] Estimation of a clustering model for non Gaussian functional data
    Xu, Tengteng
    Zhang, Xiuzhen
    Zhang, Riquan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (18) : 6462 - 6476
  • [45] Estimation of Clustering Parameters Using Gaussian Process Regression
    Rigby, Paul
    Pizarro, Oscar
    Williams, Stefan B.
    PLOS ONE, 2014, 9 (11):
  • [46] On locally adaptive density estimation
    Sain, SR
    Scott, DW
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (436) : 1525 - 1534
  • [47] Adaptive Dantzig density estimation
    Bertin, K.
    Le Pennec, E.
    Rivoirard, V.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (01): : 43 - 74
  • [48] A note on density estimation for Poisson mixtures
    McKay, I
    STATISTICS & PROBABILITY LETTERS, 1996, 27 (03) : 255 - 258
  • [49] Adaptive kernel density estimation
    Van Kerm, Philippe
    STATA JOURNAL, 2003, 3 (02): : 148 - 156
  • [50] Adaptive manifold density estimation
    Gao, Jia-Xing
    Jiang, Da-Quan
    Qian, Min-Ping
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (11) : 2317 - 2331