ADAPTIVE DENSITY ESTIMATION FOR CLUSTERING WITH GAUSSIAN MIXTURES

被引:14
|
作者
Maugis-Rabusseau, C. [1 ]
Michel, B. [2 ]
机构
[1] Univ Toulouse, INSA Toulouse, Inst Math Toulouse, F-31077 Toulouse 4, France
[2] Univ Paris 06, Lab Stat Theor & Appl, F-75252 Paris 05, France
关键词
Rate adaptive density estimation; gaussian mixture clustering; hellinger risk; non asymptotic model selection; DIRICHLET MIXTURES; CONVERGENCE; RATES;
D O I
10.1051/ps/2012018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally beta-Holder with moment and tail conditions are considered. We show that this penalized estimator is minimax adaptive to the beta regularity of such densities in the Hellinger sense.
引用
收藏
页码:698 / 724
页数:27
相关论文
共 50 条
  • [31] An Adaptive Density Peak Clustering Algorithm
    Ma S.-H.
    You H.-R.
    Tang L.
    He P.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2022, 43 (06): : 761 - 768
  • [32] Density-Based Clustering for Adaptive Density Variation
    Qian, Li
    Plant, Claudia
    Boehm, Christian
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1282 - 1287
  • [33] Gaussian mixture learning via adaptive hierarchical clustering
    Li, Jichuan
    Nehorai, Arye
    SIGNAL PROCESSING, 2018, 150 : 116 - 121
  • [34] Curve Clustering via the Split Learning of Mixtures of Gaussian Processes
    Qiang, Zhe
    Luo, Jiahui
    Ma, Jinwen
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 1089 - 1094
  • [35] Determination of the number of components in Gaussian mixtures using agglomerative clustering
    Medasani, S
    Krishnapuram, R
    1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1412 - 1417
  • [36] Estimating and Controlling Overlap in Gaussian Mixtures for Clustering Methods Evaluation
    Gherbaoui, Radhwane
    Ouali, Mohammed
    Benamrane, Nacera
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2020, 28 (02) : 183 - 211
  • [37] Local density estimation based clustering
    Pamudurthy, Sheetal Reddy
    Chandrakala, S.
    Sekhar, C. Chandra
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1249 - 1254
  • [38] Density Peak Clustering with connectivity estimation
    Guo, Wenjie
    Wang, Wenhai
    Zhao, Shunping
    Niu, Yunlong
    Zhang, Zeyin
    Liu, Xinggao
    KNOWLEDGE-BASED SYSTEMS, 2022, 243
  • [39] Nonparametric density estimation and galaxy clustering
    Jang, W
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 443 - 445
  • [40] Clustering via nonparametric density estimation
    Adelchi Azzalini
    Nicola Torelli
    Statistics and Computing, 2007, 17 : 71 - 80