Clustering via nonparametric density estimation

被引:87
|
作者
Azzalini, Adelchi [1 ]
Torelli, Nicola
机构
[1] Univ Padua, Dipartimento Sci Stat, I-35100 Padua, Italy
[2] Univ Trieste, Dipartimento Sci Econ & Stat, I-34127 Trieste, Italy
关键词
cluster analysis; Delaunay triangulation; Voronoi tessellation; nonparametric density estimation; kernel method;
D O I
10.1007/s11222-006-9010-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Although Hartigan (1975) had already put forward the idea of connecting identification of subpopulations with regions with high density of the underlying probability distribution, the actual development of methods for cluster analysis has largely shifted towards other directions, for computational convenience. Current computational resources allow us to reconsider this formulation and to develop clustering techniques directly in order to identify local modes of the density. Given a set of observations, a nonparametric estimate of the underlying density function is constructed, and subsets of points with high density are formed through suitable manipulation of the associated Delaunay triangulation. The method is illustrated with some numerical examples.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 50 条
  • [1] Clustering via nonparametric density estimation
    Adelchi Azzalini
    Nicola Torelli
    Statistics and Computing, 2007, 17 : 71 - 80
  • [2] An advancement in clustering via nonparametric density estimation
    Menardi, Giovanna
    Azzalini, Adelchi
    STATISTICS AND COMPUTING, 2014, 24 (05) : 753 - 767
  • [3] An advancement in clustering via nonparametric density estimation
    Giovanna Menardi
    Adelchi Azzalini
    Statistics and Computing, 2014, 24 : 753 - 767
  • [4] Clustering via Nonparametric Density Estimation: The R Package pdfCluster
    Azzalini, Adelchi
    Menardi, Giovanna
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (11):
  • [5] Nonparametric density estimation and galaxy clustering
    Jang, W
    STATISTICAL CHALLENGES IN ASTRONOMY, 2003, : 443 - 445
  • [6] Functional data clustering via piecewise constant nonparametric density estimation
    Boulle, Marc
    PATTERN RECOGNITION, 2012, 45 (12) : 4389 - 4401
  • [7] A novel approach to the clustering of microarray data via nonparametric density estimation
    De Bin, Riccardo
    Risso, Davide
    BMC BIOINFORMATICS, 2011, 12
  • [8] A novel approach to the clustering of microarray data via nonparametric density estimation
    Riccardo De Bin
    Davide Risso
    BMC Bioinformatics, 12
  • [9] Soft clustering for nonparametric probability density function estimation
    Lopez-Rubio, Ezequiel
    Miguel Ortiz-de-Lazcano-Lobato, Juan
    PATTERN RECOGNITION LETTERS, 2008, 29 (16) : 2085 - 2091
  • [10] Robust Nonparametric Probability Density Estimation by Soft Clustering
    Lopez-Rubio, Ezequiel
    Miguel Ortiz-de-Lazcano-Lobato, Juan
    Lopez-Rodriguez, Domingo
    del Carmen Vargas-Gonzalez, Maria
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 155 - 164