Clustering via nonparametric density estimation

被引:87
|
作者
Azzalini, Adelchi [1 ]
Torelli, Nicola
机构
[1] Univ Padua, Dipartimento Sci Stat, I-35100 Padua, Italy
[2] Univ Trieste, Dipartimento Sci Econ & Stat, I-34127 Trieste, Italy
关键词
cluster analysis; Delaunay triangulation; Voronoi tessellation; nonparametric density estimation; kernel method;
D O I
10.1007/s11222-006-9010-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Although Hartigan (1975) had already put forward the idea of connecting identification of subpopulations with regions with high density of the underlying probability distribution, the actual development of methods for cluster analysis has largely shifted towards other directions, for computational convenience. Current computational resources allow us to reconsider this formulation and to develop clustering techniques directly in order to identify local modes of the density. Given a set of observations, a nonparametric estimate of the underlying density function is constructed, and subsets of points with high density are formed through suitable manipulation of the associated Delaunay triangulation. The method is illustrated with some numerical examples.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 50 条
  • [31] Nonparametric estimation of a conditional density
    Ann-Kathrin Bott
    Michael Kohler
    Annals of the Institute of Statistical Mathematics, 2017, 69 : 189 - 214
  • [32] Nonparametric volatility density estimation
    Van Es, B
    Spreij, P
    Van Zanten, H
    BERNOULLI, 2003, 9 (03) : 451 - 465
  • [33] On nonparametric density estimation at the boundary
    Zhang, SP
    Karunamuni, RJ
    JOURNAL OF NONPARAMETRIC STATISTICS, 2000, 12 (02) : 197 - 221
  • [34] Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting
    Chacon, Jose E.
    Tarn Duong
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 499 - 532
  • [35] Density Distillation for Fast Nonparametric Density Estimation
    Fang, Bopeng
    Chen, Shifeng
    Dong, Zhurong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 9424 - 9438
  • [36] Nonparametric Estimation of Probabilistic Membership for Subspace Clustering
    Lee, Jieun
    Lee, Hyeogjin
    Lee, Minsik
    Kwak, Nojun
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (03) : 1023 - 1036
  • [37] Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods
    Abbaszadeh, Mohammad
    Chesneau, Christophe
    Doosti, Hassan
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (05) : 932 - 941
  • [38] Process monitoring using probabilistic graphical models via nonparametric density estimation
    Zeng, Jiusun
    Luo, Shihua
    Cai, Jinhui
    Xie, Lei
    Kruger, Uwe
    Xiong, Weili
    IFAC PAPERSONLINE, 2017, 50 (01): : 13886 - 13891
  • [39] Feature Screening via Mutual Information Learning Based on Nonparametric Density Estimation
    Zhou, Shengbin
    Wang, Tao
    Huang, Yejin
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [40] Quasi-Bayesian Nonparametric Density Estimation via Autoregressive Predictive Updates
    Ghalebikesabi, Sahra
    Holmes, Chris
    Fong, Edwin
    Lehmann, Brieuc
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 658 - 668