Optimized entropic uncertainty for successive projective measurements

被引:27
|
作者
Baek, Kyunghyun [1 ]
Farrow, Tristan [2 ,3 ]
Son, Wonmin [1 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
新加坡国家研究基金会;
关键词
QUANTUM MEASUREMENTS; DISTURBANCE; PRINCIPLE; OBSERVABLES;
D O I
10.1103/PhysRevA.89.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We focus here on the uncertainty of an observable Y caused by a precise measurement of X. We illustrate the effect by analyzing the general scenario of two successive measurements of spin components X and Y. We derive an optimized entropic uncertainty limit that quantifies the necessary amount of uncertainty observed in a subsequent measurement of Y. We compare this bound to recently derived error-disturbance relations and discuss how the bound quantifies the information of successive quantum measurements.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Entropic Uncertainty Relations for Successive Generalized Measurements
    Baek, Kyunghyun
    Son, Wonmin
    MATHEMATICS, 2016, 4 (02)
  • [2] ENTROPIC FORMULATION OF UNCERTAINTY RELATIONS FOR SUCCESSIVE MEASUREMENTS
    SRINIVAS, MD
    PRAMANA, 1985, 24 (05) : 673 - 684
  • [3] Optimized entropic uncertainty relations for multiple measurements
    Xie, Bo-Fu
    Ming, Fei
    Wang, Dong
    Ye, Liu
    Chen, Jing-Ling
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [4] Renyi entropy uncertainty relation for successive projective measurements
    Zhang, Jun
    Zhang, Yang
    Yu, Chang-shui
    QUANTUM INFORMATION PROCESSING, 2015, 14 (06) : 2239 - 2253
  • [5] Entropic uncertainty relations for successive measurements of canonically conjugate observables
    Rastegin, Alexey E.
    ANNALEN DER PHYSIK, 2016, 528 (11-12) : 835 - 844
  • [6] Entropic Uncertainty Relations for Successive Measurements in the Presence of a Minimal Length
    Rastegin, Alexey E.
    ENTROPY, 2018, 20 (05)
  • [7] Optimal entropic uncertainty relation for successive measurements in quantum information theory
    M. D. Srinivas
    Pramana, 2003, 60 : 1137 - 1152
  • [8] Rényi entropy uncertainty relation for successive projective measurements
    Jun Zhang
    Yang Zhang
    Chang-shui Yu
    Quantum Information Processing, 2015, 14 : 2239 - 2253
  • [9] Bounds on the entropic uncertainty in successive measurements of non-commuting observables
    Jafarpour, M
    Sabour, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2003, 118 (02): : 113 - 118
  • [10] Optimal entropic uncertainty relation for successive measurements in quantum information theory
    Srinivas, MD
    PRAMANA-JOURNAL OF PHYSICS, 2003, 60 (06): : 1137 - 1152