Optimized entropic uncertainty for successive projective measurements

被引:27
|
作者
Baek, Kyunghyun [1 ]
Farrow, Tristan [2 ,3 ]
Son, Wonmin [1 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
新加坡国家研究基金会;
关键词
QUANTUM MEASUREMENTS; DISTURBANCE; PRINCIPLE; OBSERVABLES;
D O I
10.1103/PhysRevA.89.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We focus here on the uncertainty of an observable Y caused by a precise measurement of X. We illustrate the effect by analyzing the general scenario of two successive measurements of spin components X and Y. We derive an optimized entropic uncertainty limit that quantifies the necessary amount of uncertainty observed in a subsequent measurement of Y. We compare this bound to recently derived error-disturbance relations and discuss how the bound quantifies the information of successive quantum measurements.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] INFORMATION-ENTROPIC UNCERTAINTY IN THE MEASUREMENTS OF PHOTON NUMBER AND PHASE IN OPTICAL STATES
    ABE, S
    PHYSICS LETTERS A, 1992, 166 (3-4) : 163 - 167
  • [32] Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond
    Xing, Jian
    Zhang, Yu-Ran
    Liu, Shang
    Chang, Yan-Chun
    Yue, Jie-Dong
    Fan, Heng
    Pan, Xin-Yu
    SCIENTIFIC REPORTS, 2017, 7
  • [33] Quantum-memory-assisted entropic uncertainty relations under weak measurements
    Li, Lei
    Wang, Qing-Wen
    Shen, Shu-Qian
    Li, Ming
    QUANTUM INFORMATION PROCESSING, 2017, 16 (08)
  • [34] Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond
    Jian Xing
    Yu-Ran Zhang
    Shang Liu
    Yan-Chun Chang
    Jie-Dong Yue
    Heng Fan
    Xin-Yu Pan
    Scientific Reports, 7
  • [35] Quantitative description of uncertainty and entropic uncertainty relation
    Zhang, Shi-Qi
    Yang, Hua-Tong
    ACTA PHYSICA SINICA, 2023, 72 (11)
  • [36] Uncertainty relation of successive measurements based on Wigner–Yanase skew information
    Jun Zhang
    Jia-Ning Wei
    Zhou-Bo Duan
    Kan He
    Chang-Shui Yu
    CommunicationsinTheoreticalPhysics, 2022, 74 (01) : 29 - 34
  • [37] Optimality of entropic uncertainty relations
    Abdelkhalek, Kais
    Schwonnek, Rene
    Maassen, Hans
    Furrer, Fabian
    Duhme, Joerg
    Raynal, Philippe
    Englert, Berthold-Georg
    Werner, Reinhard F.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (06)
  • [38] Quantum sampling and entropic uncertainty
    Walter O. Krawec
    Quantum Information Processing, 2019, 18
  • [39] ENTROPIC FORMULATION OF UNCERTAINTY RELATIONS
    SRINIVAS, MD
    PRAMANA, 1985, 25 (04) : 369 - 375
  • [40] Relative entropic uncertainty relation
    Floerchinger, Stefan
    Haas, Tobias
    Hoeber, Ben
    PHYSICAL REVIEW A, 2021, 103 (06)