Optimized entropic uncertainty for successive projective measurements

被引:27
|
作者
Baek, Kyunghyun [1 ]
Farrow, Tristan [2 ,3 ]
Son, Wonmin [1 ]
机构
[1] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[2] Univ Oxford, Clarendon Lab, Oxford OX1 3PU, England
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
新加坡国家研究基金会;
关键词
QUANTUM MEASUREMENTS; DISTURBANCE; PRINCIPLE; OBSERVABLES;
D O I
10.1103/PhysRevA.89.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We focus here on the uncertainty of an observable Y caused by a precise measurement of X. We illustrate the effect by analyzing the general scenario of two successive measurements of spin components X and Y. We derive an optimized entropic uncertainty limit that quantifies the necessary amount of uncertainty observed in a subsequent measurement of Y. We compare this bound to recently derived error-disturbance relations and discuss how the bound quantifies the information of successive quantum measurements.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Entropic uncertainty relations and their applications
    Coles, Patrick J.
    Berta, Mario
    Tomamichel, Marco
    Wehner, Stephanie
    REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [42] Additivity of entropic uncertainty relations
    Schwonnek, Rene
    QUANTUM, 2018, 2
  • [43] GENERALIZED ENTROPIC UNCERTAINTY RELATIONS
    MAASSEN, H
    UFFINK, JBM
    PHYSICAL REVIEW LETTERS, 1988, 60 (12) : 1103 - 1106
  • [44] Majorization entropic uncertainty relations
    Puchala, Zbigniew
    Rudnicki, Lukasz
    Zyczkowski, Karol
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
  • [45] A DISCRETE ENTROPIC UNCERTAINTY RELATION
    MAASSEN, H
    LECTURE NOTES IN MATHEMATICS, 1990, 1442 : 263 - 266
  • [46] The acoustic entropic uncertainty relations
    Majerník, V
    Vetesnik, A
    Kovár, D
    ACUSTICA, 2000, 86 (02): : 385 - 387
  • [47] Asymptotic entropic uncertainty relations
    Adamczak, Radoslaw
    Latala, Rafal
    Puchala, Zbigniew
    Zyczkowski, Karol
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
  • [48] Entropic uncertainty and measurement reversibility
    Berta, Mario
    Wehner, Stephanie
    Wilde, Mark M.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [49] Quantum sampling and entropic uncertainty
    Krawec, Walter O.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
  • [50] Review on entropic uncertainty relations
    Li Li-Juan
    Ming Fei
    Song Xue-Ke
    Ye Liu
    Wang Dong
    ACTA PHYSICA SINICA, 2022, 71 (07)