We address the generalized uncertainty principle in scenarios of successive measurements. Uncertainties are characterized by means of generalized entropies of both the Renyi and Tsallis types. Here, specific features of measurements of observables with continuous spectra should be taken into account. First, we formulated uncertainty relations in terms of Shannon entropies. Since such relations involve a state-dependent correction term, they generally differ from preparation uncertainty relations. This difference is revealed when the position is measured by the first. In contrast, state-independent uncertainty relations in terms of Renyi and Tsallis entropies are obtained with the same lower bounds as in the preparation scenario. These bounds are explicitly dependent on the acceptance function of apparatuses in momentum measurements. Entropic uncertainty relations with binning are discussed as well.
机构:
Sogang Univ, Dept Phys, Seoul 121742, South KoreaSogang Univ, Dept Phys, Seoul 121742, South Korea
Baek, Kyunghyun
Son, Wonmin
论文数: 0引用数: 0
h-index: 0
机构:
Sogang Univ, Dept Phys, Seoul 121742, South Korea
Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, EnglandSogang Univ, Dept Phys, Seoul 121742, South Korea
机构:
Irkutsk State Univ, Dept Theoret Phys, K Marx St 1, Irkutsk 664003, RussiaIrkutsk State Univ, Dept Theoret Phys, K Marx St 1, Irkutsk 664003, Russia
机构:
Peking Univ, Sch Phys, Beijing 100871, Peoples R ChinaPeking Univ, Sch Phys, Beijing 100871, Peoples R China
Liu, Shang
Mu, Liang-Zhu
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Phys, Beijing 100871, Peoples R ChinaPeking Univ, Sch Phys, Beijing 100871, Peoples R China
Mu, Liang-Zhu
Fan, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R ChinaPeking Univ, Sch Phys, Beijing 100871, Peoples R China
机构:
S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Xiao, Yunlong
Jing, Naihuan
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
N Carolina State Univ, Dept Math, Raleigh, NC 27695 USAS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Jing, Naihuan
Fei, Shao-Ming
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Sci, D-04103 Leipzig, Germany
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Fei, Shao-Ming
Li, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Technol & Business Univ, Sch Sci, Beijing 102488, Peoples R ChinaS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Li, Tao
Li-Jost, Xianqing
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Math Sci, D-04103 Leipzig, GermanyS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Li-Jost, Xianqing
Ma, Teng
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
Ma, Teng
Wang, Zhi-Xi
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaS China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China