CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:27
|
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein
    Bevacqua, Romina J.
    Zhao, Weichen
    Merheb, Emilio
    Kim, Seung Hyun
    Marson, Alexander
    Gloyn, Anna L.
    Kim, Seung K.
    ISCIENCE, 2024, 27 (01)
  • [42] CRISPR/CAS9 GENOME EDITING FOR NEURODEGENERATIVE DISEASES
    Nojadeh, Jafar Nouri
    Eryilmaz, Nur Seren Bildiren
    Erguder, Berrin Imge
    EXCLI JOURNAL, 2023, 22 : 567 - 582
  • [43] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [44] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [45] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053
  • [46] CRISPR/CAS9: THE GOLD STANDARD OF GENOME EDITING?
    Gleeson, Alfie
    Sawyer, Abigail
    BIOTECHNIQUES, 2018, 64 (06) : 239 - 244
  • [47] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [48] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39
  • [49] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [50] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21