CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells

被引:27
|
作者
Bloomer, Hanan [1 ,2 ,3 ]
Khirallah, Jennifer [1 ]
Li, Yamin [1 ]
Xu, Qiaobing [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
[2] Tufts Univ, Sch Med, Boston, MA 02111 USA
[3] Tufts Univ, Grad Sch Biomed Sci, Boston, MA 02111 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CRISPR; Cas9; Drug delivery systems; RNP; Gene therapy; Genome editing; Epigenome editing; HUMAN HEMATOPOIETIC STEM; INDUCIBLE CRISPR-CAS9 SYSTEM; HIGHLY EFFICIENT; GENE-THERAPY; NANOPARTICLE DELIVERY; LIPID NANOPARTICLES; CAS9; PROTEIN; OFF-TARGET; T-CELLS; DRUG-DELIVERY;
D O I
10.1016/j.addr.2021.114087
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system has revolutionized the ability to edit the mammalian genome, providing a platform for the correction of pathogenic mutations and further investigation into gene function. CRISPR reagents can be delivered into the cell as DNA, RNA, or pre-formed ribonucleoproteins (RNPs). RNPs offer numerous advantages over other delivery approaches due to their ability to rapidly target genomic sites and quickly degrade thereafter. Here, we review the production steps and delivery methods for Cas9 RNPs. Additionally, we discuss how RNPs enhance genome and epigenome editing efficiencies, reduce off-target editing activity, and minimize cellular toxicity in clinically relevant mammalian cell types. We include details on a broad range of editing approaches, including novel base and prime editing techniques. Finally, we summarize key challenges for the use of RNPs, and propose future perspectives on the field.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] The CRISPR/Cas9 Genome Editing Revolution
    Renjie Jiao
    Caixia Gao
    Journal of Genetics and Genomics, 2016, 43 (05) : 227 - 228
  • [22] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [23] CRISPR/Cas9 and Genome Editing in Drosophila
    Bassett, Andrew R.
    Liu, Ji-Long
    JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (01) : 7 - 19
  • [24] CRISPR/Cas9 and Genome Editing in Drosophila
    Andrew R.Bassett
    Ji-Long Liu
    JournalofGeneticsandGenomics, 2014, 41 (01) : 7 - 19
  • [25] Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes
    Wang, Qiang
    Cobine, Paul A.
    Coleman, Jeffrey J.
    FUNGAL GENETICS AND BIOLOGY, 2018, 117 : 21 - 29
  • [26] Efficient genome editing in Claviceps purpurea using a CRISPR/Cas9 ribonucleoprotein method
    Yu, Lu
    Xiao, Meili
    Zhu, Zhihua
    Wang, Yinmei
    Zhou, Zhihua
    Wang, Pingping
    Zou, Gen
    SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2022, 7 (02) : 664 - 670
  • [27] The CRISPR/Cas9 Genome Editing Revolution
    Jiao, Renjie
    Gao, Caixia
    JOURNAL OF GENETICS AND GENOMICS, 2016, 43 (05) : 227 - 228
  • [28] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [29] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264
  • [30] CRISPR/Cas9 genome editing in crops
    Smedley, Mark
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S104 - S104